PARALLELPROJ-an open-source framework for fast calculation of projections in tomography.

Georg Schramm, Kris Thielemans
{"title":"PARALLELPROJ-an open-source framework for fast calculation of projections in tomography.","authors":"Georg Schramm, Kris Thielemans","doi":"10.3389/fnume.2023.1324562","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we introduce parallelproj, a novel open-source framework designed for efficient parallel computation of projections in tomography leveraging either multiple CPU cores or GPUs. This framework efficiently implements forward and back projection functions for both sinogram and listmode data, utilizing Joseph's method, which is further extended to encompass time-of-flight (TOF) PET projections. Our evaluation involves a series of tests focusing on PET image reconstruction using data sourced from a state-of-the-art clinical PET/CT system. We thoroughly benchmark the performance of the projectors in non-TOF and TOF, sinogram, and listmode employing multi CPU-cores, hybrid CPU/GPU, and exclusive GPU mode. Moreover, we also investigate the timing of non-TOF sinogram projections calculated in STIR (Software for Tomographic Image Reconstruction) which recently integrated parallelproj as one of its projection backends. Our results indicate that the exclusive GPU mode provides acceleration factors between 25 and 68 relative to the multi-CPU-core mode. Furthermore, we demonstrate that OSEM listmode reconstruction of state-of-the-art real-world PET data sets is achievable within a few seconds using a single consumer GPU.</p>","PeriodicalId":73095,"journal":{"name":"Frontiers in nuclear medicine (Lausanne, Switzerland)","volume":"3 ","pages":"1324562"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in nuclear medicine (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnume.2023.1324562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce parallelproj, a novel open-source framework designed for efficient parallel computation of projections in tomography leveraging either multiple CPU cores or GPUs. This framework efficiently implements forward and back projection functions for both sinogram and listmode data, utilizing Joseph's method, which is further extended to encompass time-of-flight (TOF) PET projections. Our evaluation involves a series of tests focusing on PET image reconstruction using data sourced from a state-of-the-art clinical PET/CT system. We thoroughly benchmark the performance of the projectors in non-TOF and TOF, sinogram, and listmode employing multi CPU-cores, hybrid CPU/GPU, and exclusive GPU mode. Moreover, we also investigate the timing of non-TOF sinogram projections calculated in STIR (Software for Tomographic Image Reconstruction) which recently integrated parallelproj as one of its projection backends. Our results indicate that the exclusive GPU mode provides acceleration factors between 25 and 68 relative to the multi-CPU-core mode. Furthermore, we demonstrate that OSEM listmode reconstruction of state-of-the-art real-world PET data sets is achievable within a few seconds using a single consumer GPU.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PARALLELPROJ - 用于快速计算断层扫描投影的开源框架。
在本文中,我们将介绍一个新颖的开源框架--parallelproj,该框架旨在利用多个 CPU 内核或 GPU 高效并行计算断层摄影中的投影。该框架利用约瑟夫方法有效地实现了正弦图和列表模式数据的正向和反向投影功能,并进一步扩展到飞行时间(TOF)PET 投影。我们的评估包括一系列测试,重点是使用来自最先进的临床 PET/CT 系统的数据重建 PET 图像。我们采用多 CPU 核、CPU/GPU 混合模式和独占 GPU 模式,对投影仪在非 TOF 和 TOF、正弦图和列表模式下的性能进行了全面的基准测试。此外,我们还研究了在 STIR(断层图像重建软件)中计算的非 TOF 正弦曲线投影的时序,该软件最近集成了 parallelproj 作为其投影后端之一。我们的研究结果表明,相对于多 CPU 内核模式,独占 GPU 模式可提供 25 到 68 倍的加速度。此外,我们还证明了使用单个消费级 GPU 在几秒钟内就能完成最先进的真实 PET 数据集的 OSEM 列表模式重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Immunohistochemical basis for FAP as a candidate theranostic target across a broad range of cholangiocarcinoma subtypes. SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging. Editorial: Recent advances in radiotheranostics. αvβ6-integrin targeted PET/CT imaging in pancreatic cancer patients using 68Ga-Trivehexin. Contrastive learning for neural fingerprinting from limited neuroimaging data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1