A Versatile Metal-Organic-Framework Pillared Interlayer Design for High-Capacity and Long-Life Lithium-Sulfur Batteries.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-10 Epub Date: 2024-11-07 DOI:10.1002/anie.202414770
Peng Yang, Jun Qiang, Jiaqi Chen, Zhouyang Zhang, Ming Xu, Linfeng Fei
{"title":"A Versatile Metal-Organic-Framework Pillared Interlayer Design for High-Capacity and Long-Life Lithium-Sulfur Batteries.","authors":"Peng Yang, Jun Qiang, Jiaqi Chen, Zhouyang Zhang, Ming Xu, Linfeng Fei","doi":"10.1002/anie.202414770","DOIUrl":null,"url":null,"abstract":"<p><p>Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at a lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues impeding their practical applications are the sluggish kinetics and the parasitic shuttling reactions of sulfur and polysulfides. Here, pillaring the multilayer graphene membrane with a metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling these issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides, and vastly affording the lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g<sup>-1</sup> at 0.1 C) and longevity (average capacity decay of 0.034 % per cycle in 2000 cycles) for lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi<sub>0.91</sub>Mn<sub>0.03</sub>Co<sub>0.06</sub>O<sub>2</sub>)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of \"gap-filling\" materials in fabricating multi-functional separators, bringing forward the pillared interlayer structure for energy-storage applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414770"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at a lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues impeding their practical applications are the sluggish kinetics and the parasitic shuttling reactions of sulfur and polysulfides. Here, pillaring the multilayer graphene membrane with a metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling these issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides, and vastly affording the lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g-1 at 0.1 C) and longevity (average capacity decay of 0.034 % per cycle in 2000 cycles) for lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi0.91Mn0.03Co0.06O2)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of "gap-filling" materials in fabricating multi-functional separators, bringing forward the pillared interlayer structure for energy-storage applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高容量和长寿命锂硫电池的多功能金属有机框架支柱夹层设计。
与最先进的锂离子电池技术相比,开发高性能锂硫电池是一种以较低成本获得较高能量密度的可行方法。然而,阻碍其实际应用的主要问题是硫和多硫化物的缓慢动力学和寄生穿梭反应。在这里,多层石墨烯与金属有机框架(MOF)的支柱作用证明了多功能层间设计对解决这些问题的重大影响。与迄今报道的普通复合分离剂不同,三金属镍-钴-锰 MOF(NCM-MOF)作为支柱的参与支持了离子通道互连层间结构的构建,出人意料地平衡了界面浓度极化,在空间上限制了可溶性多硫化物,并为高效多硫化物筛分/转化提供了大量亲锂位点。实验表明,MOF 层间结构可使锂硫电池具有出色的容量(0.1C 时为 1634 mAh g-1)和寿命(2000 次循环中每次循环的平均容量衰减为 0.034%)。此外,这种多层隔膜还可以很容易地集成到以高镍正极(LiNi0.91Mn0.03Co0.06O2)为基础的锂离子电池中,从而有效地抑制了循环过程中不希望出现的相演化。这些研究结果表明,"填隙 "材料在制造多功能隔膜方面具有潜力,并将柱状层间结构引入了储能应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Room‐temperature Magnetocapacitance Spanning 97 K Hysteresis in Molecular Material An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties. Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing Photoinduced Late‐Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives Front Cover: Interdependence of Support Wettability, Electrodeposition Rate, Sodium Metal Anode and SEI Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1