{"title":"Seed abortion caused by the combination of two duplicate genes in the progeny from the cross between <i>Oryza sativa</i> and <i>Oryza meridionalis</i>.","authors":"Daiki Toyomoto, Yukika Shibata, Masato Uemura, Satoru Taura, Tadashi Sato, Robert Henry, Ryuji Ishikawa, Katsuyuki Ichitani","doi":"10.1270/jsbbs.23084","DOIUrl":null,"url":null,"abstract":"<p><p>Seed development is an essential phenomenon for all sexual propagative plant species. The functional allele at <i>SEED DEVELOPMENT 1</i> (<i>SDV1</i>) or <i>SEED DEVELOPMENT 2</i> (<i>SDV2</i>) loci is essential for seed development for <i>Oryza sativa</i> and <i>Oryza meridionalis</i>. In the present study, we performed fine mapping of <i>SDV1</i>, narrowing down the area of interest to 333kb on chromosome 6. Haplotype analysis around the <i>SDV1</i> locus of <i>O. meridionalis</i> accessions indicated that they shared the DNA polymorphism, suggesting that they have a common abortive allele at the <i>SDV1</i> locus. Linkage analysis of the candidate <i>SDV2</i> gene showed that it was located on chromosome 4. The candidate <i>SDV2</i> was confirmed using a population in which both the <i>SDV1</i> and <i>SDV2</i> genes were segregating. The chromosomal region covering the <i>SDV1</i> gene was predicted to contain 30 protein-coding genes in <i>O. sativa</i>. Five of these genes have conserved DNA sequences in the chromosomal region of the <i>SDV2</i> gene on chromosome 4, and not on chromosome 6, of <i>O. meridionalis</i>. These results suggest that these five genes could be candidates for <i>SDV1</i>, and that their orthologous genes located on chromosome 4 of <i>O. meridionalis</i> could be candidates for <i>SDV2</i>.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 2","pages":"146-158"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.23084","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Seed development is an essential phenomenon for all sexual propagative plant species. The functional allele at SEED DEVELOPMENT 1 (SDV1) or SEED DEVELOPMENT 2 (SDV2) loci is essential for seed development for Oryza sativa and Oryza meridionalis. In the present study, we performed fine mapping of SDV1, narrowing down the area of interest to 333kb on chromosome 6. Haplotype analysis around the SDV1 locus of O. meridionalis accessions indicated that they shared the DNA polymorphism, suggesting that they have a common abortive allele at the SDV1 locus. Linkage analysis of the candidate SDV2 gene showed that it was located on chromosome 4. The candidate SDV2 was confirmed using a population in which both the SDV1 and SDV2 genes were segregating. The chromosomal region covering the SDV1 gene was predicted to contain 30 protein-coding genes in O. sativa. Five of these genes have conserved DNA sequences in the chromosomal region of the SDV2 gene on chromosome 4, and not on chromosome 6, of O. meridionalis. These results suggest that these five genes could be candidates for SDV1, and that their orthologous genes located on chromosome 4 of O. meridionalis could be candidates for SDV2.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.