Jianfeng Ma, Qunyan Yao, Suo Lv, Jiasheng Yi, Dan Zhu, Changfeng Zhu, Lianhui Wang, Shao Su
{"title":"Integrated triple signal amplification strategy for ultrasensitive electrochemical detection of gastric cancer-related microRNA utilizing MoS<sub>2</sub>-based nanozyme, hybridization chain reaction, and horseradish peroxidase.","authors":"Jianfeng Ma, Qunyan Yao, Suo Lv, Jiasheng Yi, Dan Zhu, Changfeng Zhu, Lianhui Wang, Shao Su","doi":"10.1186/s12951-024-02848-z","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis and treatment of gastric cancer (GC) play a vital role in improving efficacy, reducing mortality and prolonging patients' lives. Given the importance of early detection of gastric cancer, an electrochemical biosensor was developed for the ultrasensitive detection of miR-19b-3p by integrating MoS<sub>2</sub>-based nanozymes, hybridization chain reaction (HCR) with enzyme catalyzed reaction. The as-prepared MoS<sub>2</sub>-based nanocomposites were used as substrate materials to construct nanoprobes, which can simultaneously load probe DNA and HCR initiator for signal amplification. Moreover, the MoS<sub>2</sub>-based nanocomposites are also employed as nanozymes to amplify electrochemical response. The presence of miR-19b-3p induced the assembly of MoS<sub>2</sub>-based nanoprobes on the electrode surface, which can activate in-situ HCR reaction to load a large number of horseradish peroxidase (HRP) for signal amplification. Coupling with the co-catalytic ability of HRP and MoS<sub>2</sub>-based nanozymes, the designed electrochemical biosensor can detect as low as 0.7 aM miR-19b-3p. More importantly, this biosensor can efficiently analyze miR-19b-3p in clinical samples from healthy people and gastric cancer patients due to its excellent sensitivity and selectivity, suggesting that this biosensor has a potential application in early diagnosis of disease.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02848-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis and treatment of gastric cancer (GC) play a vital role in improving efficacy, reducing mortality and prolonging patients' lives. Given the importance of early detection of gastric cancer, an electrochemical biosensor was developed for the ultrasensitive detection of miR-19b-3p by integrating MoS2-based nanozymes, hybridization chain reaction (HCR) with enzyme catalyzed reaction. The as-prepared MoS2-based nanocomposites were used as substrate materials to construct nanoprobes, which can simultaneously load probe DNA and HCR initiator for signal amplification. Moreover, the MoS2-based nanocomposites are also employed as nanozymes to amplify electrochemical response. The presence of miR-19b-3p induced the assembly of MoS2-based nanoprobes on the electrode surface, which can activate in-situ HCR reaction to load a large number of horseradish peroxidase (HRP) for signal amplification. Coupling with the co-catalytic ability of HRP and MoS2-based nanozymes, the designed electrochemical biosensor can detect as low as 0.7 aM miR-19b-3p. More importantly, this biosensor can efficiently analyze miR-19b-3p in clinical samples from healthy people and gastric cancer patients due to its excellent sensitivity and selectivity, suggesting that this biosensor has a potential application in early diagnosis of disease.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.