{"title":"Causal Relationships between Lymphocyte Subsets and Risk of Coronary Artery Disease: A Two-Sample Mendelian Randomization Study.","authors":"Zhao Ma, Libo Liu, Jinfan Tian, Chenchen Tu, Dongfeng Zhang, Mingduo Zhang, Huan Zhang, Ziyu An, Meichen Sun, Hongjia Zhang, Xiantao Song","doi":"10.31083/j.rcm2509326","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Currently, the causal relationship between lymphocyte subsets and coronary artery disease (CAD) remains unclear. Therefore, we utilized Mendelian randomization (MR) to assess the association between lymphocyte subsets and CAD.</p><p><strong>Methods: </strong>We performed a two-sample MR analysis using publicly available genome-wide association studies (GWAS) datasets. The primary method of analysis to comprehensively evaluate causal effects was the inverse variance-weighted (IVW) method. The four additional MR approaches were MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analysis incorporated Cochran's Q and MR-Egger intercept tests to identify residual heterogeneity and potential horizontal pleiotropy, respectively. The MR-PRESSO distortion test was applied to identify potential pleiotropic outliers. Leave-one-out analysis confirmed that no single single-nucleotide polymorphism (SNP) significantly affected the MR estimate. We conducted reverse MR analysis to investigate the impact of variables correlated with outcomes in forward MR analysis.</p><p><strong>Results: </strong>The IVW method revealed a significant positive association between B cell count and CAD (odds ratio (OR) = 1.08 (95% CI: 1.04, 1.11), <i>p</i> = 2.67 × 10<sup>-5</sup>). A similar association was observed between B cell count and myocardial infarction (MI) (OR = 1.07 (95% CI: 1.03, 1.11), <i>p</i> = 5.69 × 10<sup>-4</sup>). Sensitivity analyses detected no outliers, heterogeneity, or pleiotropy. The reverse MR analysis was conducted to investigate the impact of CAD and MI on B cell count, and the IVW results showed no statistical significance.</p><p><strong>Conclusions: </strong>Our study suggests that a higher absolute B cell count is linked to an increased risk of CAD and MI.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.rcm2509326","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Currently, the causal relationship between lymphocyte subsets and coronary artery disease (CAD) remains unclear. Therefore, we utilized Mendelian randomization (MR) to assess the association between lymphocyte subsets and CAD.
Methods: We performed a two-sample MR analysis using publicly available genome-wide association studies (GWAS) datasets. The primary method of analysis to comprehensively evaluate causal effects was the inverse variance-weighted (IVW) method. The four additional MR approaches were MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analysis incorporated Cochran's Q and MR-Egger intercept tests to identify residual heterogeneity and potential horizontal pleiotropy, respectively. The MR-PRESSO distortion test was applied to identify potential pleiotropic outliers. Leave-one-out analysis confirmed that no single single-nucleotide polymorphism (SNP) significantly affected the MR estimate. We conducted reverse MR analysis to investigate the impact of variables correlated with outcomes in forward MR analysis.
Results: The IVW method revealed a significant positive association between B cell count and CAD (odds ratio (OR) = 1.08 (95% CI: 1.04, 1.11), p = 2.67 × 10-5). A similar association was observed between B cell count and myocardial infarction (MI) (OR = 1.07 (95% CI: 1.03, 1.11), p = 5.69 × 10-4). Sensitivity analyses detected no outliers, heterogeneity, or pleiotropy. The reverse MR analysis was conducted to investigate the impact of CAD and MI on B cell count, and the IVW results showed no statistical significance.
Conclusions: Our study suggests that a higher absolute B cell count is linked to an increased risk of CAD and MI.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.