Haidong Yan, Yarong Jin, Haipeng Yu, Chengran Wang, Bingchao Wu, Chris Stephen Jones, Xiaoshan Wang, Zheni Xie, Linkai Huang
{"title":"Genomic selection for agronomical phenotypes using genome-wide SNPs and SVs in pearl millet.","authors":"Haidong Yan, Yarong Jin, Haipeng Yu, Chengran Wang, Bingchao Wu, Chris Stephen Jones, Xiaoshan Wang, Zheni Xie, Linkai Huang","doi":"10.1007/s00122-024-04754-2","DOIUrl":null,"url":null,"abstract":"<p><p>Pearl millet is an essential crop worldwide, with noteworthy resilience to abiotic stress, yet the advancement of its breeding remains constrained by the underutilization of molecular-assisted breeding techniques. In this study, we collected 1,455,924 single nucleotide polymorphism (SNP) and 124,532 structural variant (SV) markers primarily from a pearl millet inbred germplasm association panel consisting of 242 accessions including 120 observed phenotypes, mostly related to the yield. Our findings revealed that the SV markers had the capacity to capture genetic diversity not discerned by SNP markers. Furthermore, no correlation in heritability was observed between SNP and SV markers associated with the same phenotype. The assessment of the nine genomic prediction models revealed that SV markers performed better than SNP markers. When using the SV markers as the predictor variable, the genomic BLUP model achieved the best performance, while using the SNP markers, Bayesian methods outperformed the others. The integration of these models enabled the identification of eight candidate accessions with high genomic estimated breeding values (GEBV) across nine phenotypes using SNP markers. Four candidate accessions were identified with high GEBV across 22 phenotypes using SV markers. Notably, accession 'P23' emerged as a consistent candidate predicted based on both SNP and SV markers specifically for panicle number. These findings contribute valuable insights into the potential of utilizing both SNP and SV markers for genomic prediction in pearl millet breeding. Moreover, the identification of promising candidate accessions, such as 'P23', underscores the accelerated prospects of molecular breeding initiatives for enhancing pearl millet varieties.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"244"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04754-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Pearl millet is an essential crop worldwide, with noteworthy resilience to abiotic stress, yet the advancement of its breeding remains constrained by the underutilization of molecular-assisted breeding techniques. In this study, we collected 1,455,924 single nucleotide polymorphism (SNP) and 124,532 structural variant (SV) markers primarily from a pearl millet inbred germplasm association panel consisting of 242 accessions including 120 observed phenotypes, mostly related to the yield. Our findings revealed that the SV markers had the capacity to capture genetic diversity not discerned by SNP markers. Furthermore, no correlation in heritability was observed between SNP and SV markers associated with the same phenotype. The assessment of the nine genomic prediction models revealed that SV markers performed better than SNP markers. When using the SV markers as the predictor variable, the genomic BLUP model achieved the best performance, while using the SNP markers, Bayesian methods outperformed the others. The integration of these models enabled the identification of eight candidate accessions with high genomic estimated breeding values (GEBV) across nine phenotypes using SNP markers. Four candidate accessions were identified with high GEBV across 22 phenotypes using SV markers. Notably, accession 'P23' emerged as a consistent candidate predicted based on both SNP and SV markers specifically for panicle number. These findings contribute valuable insights into the potential of utilizing both SNP and SV markers for genomic prediction in pearl millet breeding. Moreover, the identification of promising candidate accessions, such as 'P23', underscores the accelerated prospects of molecular breeding initiatives for enhancing pearl millet varieties.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.