Unveiling the Persistent Dynamics of Visual-Motor Skill via Drifting Markov Modeling.

IF 0.7 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Nonlinear Dynamics Psychology and Life Sciences Pub Date : 2024-10-01
Emmanouil-Nektarios Kalligeris, Vlad Stefan Barbu, Guillaume Hacques, Ludovic Seifert, Nicolas Vergne
{"title":"Unveiling the Persistent Dynamics of Visual-Motor Skill via Drifting Markov Modeling.","authors":"Emmanouil-Nektarios Kalligeris, Vlad Stefan Barbu, Guillaume Hacques, Ludovic Seifert, Nicolas Vergne","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the climbing dynamics of learning on a long-time scale, by using Drifting Markov models. Climbing constitutes a complex decision-making task that requires effective visual-motor coordination and exploration of the environment. Drifting Markov models, is a class of constrained heterogeneous Markov processes that allow the modeling of data that exhibit heterogeneity. By applying the later models on real-world visual motor skill data, we aim to uncover the persistent dynamics of learning in climbing. To that end a real case study is conducted based on an experiment, with results that (a) help in the understanding of skill acquisition in physically demanding environments; and (b) provide insights into the role of exploration and visual-motor coordination in learning.</p>","PeriodicalId":46218,"journal":{"name":"Nonlinear Dynamics Psychology and Life Sciences","volume":"28 4","pages":"431-447"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics Psychology and Life Sciences","FirstCategoryId":"102","ListUrlMain":"","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the climbing dynamics of learning on a long-time scale, by using Drifting Markov models. Climbing constitutes a complex decision-making task that requires effective visual-motor coordination and exploration of the environment. Drifting Markov models, is a class of constrained heterogeneous Markov processes that allow the modeling of data that exhibit heterogeneity. By applying the later models on real-world visual motor skill data, we aim to uncover the persistent dynamics of learning in climbing. To that end a real case study is conducted based on an experiment, with results that (a) help in the understanding of skill acquisition in physically demanding environments; and (b) provide insights into the role of exploration and visual-motor coordination in learning.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过漂移马尔可夫模型揭示视觉运动技能的持续动态性
本研究利用漂移马尔可夫模型研究了长时间学习的攀登动态。攀爬是一项复杂的决策任务,需要有效的视觉运动协调和对环境的探索。漂移马尔可夫模型是一类受约束的异质马尔可夫过程,可以对表现出异质的数据进行建模。通过将后一种模型应用于真实世界的视觉运动技能数据,我们旨在揭示攀爬学习的持续动态。为此,我们在一项实验的基础上进行了实际案例研究,其结果(a)有助于理解在体力要求较高的环境中技能的习得;(b)为探索和视觉运动协调在学习中的作用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
11.10%
发文量
26
期刊最新文献
The "Two Worlds, Two Urns" Experiment: A Teacher's Reflection on Ergodicity and Economic Methodology. On the Effectiveness of Sparse Identification Methods to Detect Nonlinear Models of Oscillatory Dynamics in Psychology and the Life Sciences. Singular Value Decomposition Entropy for Complex Data Analysis. Estimating Fractional Dependencies and Scale Invariance in Univariate Time Series Data: A Primer. Quantum Fractal Art: Bringing Fractals into the Age of Quantum Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1