Marie Flamme, Raphael Göhring, Denise Zamarbide, Corentin Bon, Alexandra Vissières, Anne Basler, Daniela Miranda, Rainer Kneuer, Greg Mann
{"title":"Identification of a Novel Transasparaginase Activity of <i>Bacillus subtilis</i> (bTG) for Sequence-Specific Bioconjugation.","authors":"Marie Flamme, Raphael Göhring, Denise Zamarbide, Corentin Bon, Alexandra Vissières, Anne Basler, Daniela Miranda, Rainer Kneuer, Greg Mann","doi":"10.1021/acs.bioconjchem.4c00306","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of <i>Bacillus subtilis</i> transglutaminase (bTG) to functionalize BSA has been investigated using peptide mapping experiments. Interestingly, the conjugation was not detected on a glutamine but on an asparagine residue. A sequence determination study was further performed, and a sequence of 10 amino acids for site-specific conjugation was identified. A monobody showing no native reactivity with the bTG enzyme was produced with the identified peptide sequences and successfully conjugated to various types of substrates in very high yields (>90%) with a 1/1/1.5 ratio of protein/amine/enzyme. Direct conjugation to the amino linker of a small interfering RNA (siRNA) was achieved in good yield, and no impact on the siRNA activity was observed following the conjugation. The identified sequences were further engineered in VHH and IgG scaffolds, and successful conjugation could also be observed with both small molecules and siRNA, confirming the potential of bTG for site-specific enzymatic bioconjugation.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00306","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The ability of Bacillus subtilis transglutaminase (bTG) to functionalize BSA has been investigated using peptide mapping experiments. Interestingly, the conjugation was not detected on a glutamine but on an asparagine residue. A sequence determination study was further performed, and a sequence of 10 amino acids for site-specific conjugation was identified. A monobody showing no native reactivity with the bTG enzyme was produced with the identified peptide sequences and successfully conjugated to various types of substrates in very high yields (>90%) with a 1/1/1.5 ratio of protein/amine/enzyme. Direct conjugation to the amino linker of a small interfering RNA (siRNA) was achieved in good yield, and no impact on the siRNA activity was observed following the conjugation. The identified sequences were further engineered in VHH and IgG scaffolds, and successful conjugation could also be observed with both small molecules and siRNA, confirming the potential of bTG for site-specific enzymatic bioconjugation.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.