In Situ Reconstructing NiFe Oxalate Toward Overall Water Splitting.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-10-03 DOI:10.1002/advs.202408754
Zhen Zhang, Xiaoyu Ren, Wenyuan Dai, Hang Zhang, Zhengyin Sun, Zhuang Ye, Ying Hou, Peizhi Liu, Bingshe Xu, Lihua Qian, Ting Liao, Haixia Zhang, Junjie Guo, Ziqi Sun
{"title":"In Situ Reconstructing NiFe Oxalate Toward Overall Water Splitting.","authors":"Zhen Zhang, Xiaoyu Ren, Wenyuan Dai, Hang Zhang, Zhengyin Sun, Zhuang Ye, Ying Hou, Peizhi Liu, Bingshe Xu, Lihua Qian, Ting Liao, Haixia Zhang, Junjie Guo, Ziqi Sun","doi":"10.1002/advs.202408754","DOIUrl":null,"url":null,"abstract":"<p><p>Surface reconstruction plays an essential role in electrochemical catalysis. The structures, compositions, and functionalities of the real catalytic species and sites generated by reconstruction, however, are yet to be clearly understood, for the metastable or transit state of most reconstructed structures. Herein, a series of NiFe oxalates (Ni<sub>x</sub>Fe<sub>1-</sub> <sub>x</sub>C<sub>2</sub>O<sub>4</sub>, x = 1, 0.9, 0.7, 0.6, 0.5, and 0) are synthesized for overall water splitting electrocatalysis. Whilst Ni<sub>x</sub>Fe<sub>1-x</sub>C<sub>2</sub>O<sub>4</sub> shows great hydrogen evolution reaction (HER) activity, the in situ reconstructed Ni<sub>x</sub>Fe<sub>1-x</sub>OOH exhibits outstanding oxygen evolution reaction (OER) activity. As identified by the in situ Raman spectroscopy and quasi-in situ X-ray absorption spectroscopy (XAS) techniques, reconstructions from Ni<sub>x</sub>Fe<sub>1-x</sub>C<sub>2</sub>O<sub>4</sub> into defective Ni<sub>x</sub>Fe<sub>1-x</sub>OOH and finally amorphous Ni<sub>x</sub>Fe<sub>1-x</sub>OOH active species (R-Ni<sub>x</sub>Fe<sub>1-x</sub>OOH) are confirmed upon cyclic voltammetry processes. Specifically, the fully reconstructed R-Ni<sub>0.6</sub>Fe<sub>0.4</sub>OOH demonstrates the best OER activity (179 mV to reach 10 mA cm<sup>-2</sup>), originating from its abundant real active sites and optimal d-band center. Benefiting from the reconstruction, an alkaline electrolyzer composed of a Ni<sub>0.6</sub>Fe<sub>0.4</sub>C<sub>2</sub>O<sub>4</sub> cathode and an in situ reconstructed R-Ni<sub>0.6</sub>Fe<sub>0.4</sub>OOH anode achieves a superb overall water splitting performance (1.52 V@10 mA cm<sup>-2</sup>). This work provides an in-depth structure-property relationship understanding on the reconstruction of catalysts and offers a new pathway to designing novel catalyst.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408754","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface reconstruction plays an essential role in electrochemical catalysis. The structures, compositions, and functionalities of the real catalytic species and sites generated by reconstruction, however, are yet to be clearly understood, for the metastable or transit state of most reconstructed structures. Herein, a series of NiFe oxalates (NixFe1- xC2O4, x = 1, 0.9, 0.7, 0.6, 0.5, and 0) are synthesized for overall water splitting electrocatalysis. Whilst NixFe1-xC2O4 shows great hydrogen evolution reaction (HER) activity, the in situ reconstructed NixFe1-xOOH exhibits outstanding oxygen evolution reaction (OER) activity. As identified by the in situ Raman spectroscopy and quasi-in situ X-ray absorption spectroscopy (XAS) techniques, reconstructions from NixFe1-xC2O4 into defective NixFe1-xOOH and finally amorphous NixFe1-xOOH active species (R-NixFe1-xOOH) are confirmed upon cyclic voltammetry processes. Specifically, the fully reconstructed R-Ni0.6Fe0.4OOH demonstrates the best OER activity (179 mV to reach 10 mA cm-2), originating from its abundant real active sites and optimal d-band center. Benefiting from the reconstruction, an alkaline electrolyzer composed of a Ni0.6Fe0.4C2O4 cathode and an in situ reconstructed R-Ni0.6Fe0.4OOH anode achieves a superb overall water splitting performance (1.52 V@10 mA cm-2). This work provides an in-depth structure-property relationship understanding on the reconstruction of catalysts and offers a new pathway to designing novel catalyst.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位重构草酸镍铁合金,实现整体水分离。
表面重构在电化学催化中起着至关重要的作用。然而,对于大多数重构结构的蜕变态或过渡态而言,通过重构产生的真正催化物种和位点的结构、组成和功能尚有待明确了解。本文合成了一系列镍铁草酸盐(NixFe1- xC2O4,x = 1、0.9、0.7、0.6、0.5 和 0),用于整体水分离电催化。NixFe1-xC2O4 表现出很高的氢进化反应(HER)活性,而原位重构的 NixFe1-xOOH 则表现出卓越的氧进化反应(OER)活性。经原位拉曼光谱和准原位 X 射线吸收光谱(XAS)技术鉴定,NixFe1-xC2O4 重构为有缺陷的 NixFe1-xOOH 以及最终的无定形 NixFe1-xOOH 活性物种(R-NixFe1-xOOH)均在循环伏安法过程中得到证实。具体来说,完全重构的 R-Ni0.6Fe0.4OOH 具有最佳的 OER 活性(179 mV,达到 10 mA cm-2),这源于其丰富的真实活性位点和最佳的 d 带中心。得益于重构,由 Ni0.6Fe0.4C2O4 阴极和原位重构的 R-Ni0.6Fe0.4OOH 阳极组成的碱性电解槽实现了极佳的整体水分离性能(1.52 V@10 mA cm-2)。这项工作深入理解了催化剂重构的结构-性能关系,为设计新型催化剂提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
An AI Agent for Fully Automated Multi-Omic Analyses. In Situ Reconstructing NiFe Oxalate Toward Overall Water Splitting. Membrane Tension Regulation is Required for Wound Repair. Noise-Aware Active Learning to Develop High-Temperature Shape Memory Alloys with Large Latent Heat. The T-Type Calcium Channel CACNA1H is Required for Smooth Muscle Cytoskeletal Organization During Tracheal Tubulogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1