Nanoarchitectonics of vanadium nanoparticles decorated mesoporous carbon nitride in photocatalytic systems: A study on ethylbenzene oxidation reaction

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-23 DOI:10.1016/j.jcis.2024.09.186
{"title":"Nanoarchitectonics of vanadium nanoparticles decorated mesoporous carbon nitride in photocatalytic systems: A study on ethylbenzene oxidation reaction","authors":"","doi":"10.1016/j.jcis.2024.09.186","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have described the synthesis of vanadium (V) nanoparticles (NPs) anchored on mesoporous graphitic carbon nitride (V@mpg-C<sub>3</sub>N<sub>4</sub>) and their uses in photocatalytic ethylbenzene oxidation to the respective acetophenones. The mpg-C<sub>3</sub>N<sub>4</sub> serves as the support for the decoration of V NPs, through a simple impregnation method. Various advanced techniques, such as XRD, UV–vis spectrometry, HRTEM, HAADF-STEM, AC-STEM, elemental mapping, and BET surface area analysis, were employed for the characterization of V@mpg-C<sub>3</sub>N<sub>4</sub>. The detailed characterization studies reveal that the V@mpg-C<sub>3</sub>N<sub>4</sub> catalyst has a medium band gap (2.78 eV), a high surface area (76.7 m<sup>2</sup>g<sup>−1</sup>), and a mesoporous nature. The V@mpg-C<sub>3</sub>N<sub>4</sub> photocatalysts demonstrated excellent performance in the light-assisted oxidation of ethylbenzene, achieving over 99 % conversion and selectivity for acetophenone in an environmentally friendly solvent (water) using a domestic light source (50 W white light). This developed synthesis strategy will be useful for synthesizing various noble and non-noble metal-based catalysts and their applications in organic transformation and environmental remediation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724022513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have described the synthesis of vanadium (V) nanoparticles (NPs) anchored on mesoporous graphitic carbon nitride (V@mpg-C3N4) and their uses in photocatalytic ethylbenzene oxidation to the respective acetophenones. The mpg-C3N4 serves as the support for the decoration of V NPs, through a simple impregnation method. Various advanced techniques, such as XRD, UV–vis spectrometry, HRTEM, HAADF-STEM, AC-STEM, elemental mapping, and BET surface area analysis, were employed for the characterization of V@mpg-C3N4. The detailed characterization studies reveal that the V@mpg-C3N4 catalyst has a medium band gap (2.78 eV), a high surface area (76.7 m2g−1), and a mesoporous nature. The V@mpg-C3N4 photocatalysts demonstrated excellent performance in the light-assisted oxidation of ethylbenzene, achieving over 99 % conversion and selectivity for acetophenone in an environmentally friendly solvent (water) using a domestic light source (50 W white light). This developed synthesis strategy will be useful for synthesizing various noble and non-noble metal-based catalysts and their applications in organic transformation and environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光催化系统中介孔氮化碳装饰钒纳米粒子的纳米结构:乙苯氧化反应研究。
在这项工作中,我们介绍了锚定在介孔石墨氮化碳(V@mpg-C3N4)上的钒(V)纳米粒子(NPs)的合成及其在光催化乙苯氧化成相应苯乙酮中的应用。通过简单的浸渍方法,介孔石墨氮化碳(mpg-C3N4)成为装饰 V NPs 的支撑物。在对 V@mpg-C3N4 进行表征时,采用了多种先进技术,如 XRD、紫外-可见光谱、HRTEM、HAADF-STEM、AC-STEM、元素图谱和 BET 表面积分析。详细的表征研究表明,V@mpg-C3N4 催化剂具有中等带隙(2.78 eV)、高比表面积(76.7 m2g-1)和介孔性质。V@mpg-C3N4 光催化剂在光助氧化乙苯的过程中表现出优异的性能,在使用家用光源(50 瓦白光)的环境友好型溶剂(水)中,其对苯乙酮的转化率和选择性均超过 99%。所开发的这一合成策略将有助于合成各种贵金属和非贵金属基催化剂及其在有机转化和环境修复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production. Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries. Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. Interfacial engineering of heterostructured CoP/FeP nanoflakes as bifunctional electrocatalyts toward alkaline water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1