Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-10-02 DOI:10.1021/jasms.4c00341
Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt
{"title":"Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed.","authors":"Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt","doi":"10.1021/jasms.4c00341","DOIUrl":null,"url":null,"abstract":"<p><p>Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00341","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在轨道阱质谱仪上设计和实现解吸电流聚焦喷雾器,以实现高空间分辨率和高速 DESI 质谱成像。
自 2004 年首次提出解吸电喷雾电离质谱法(DESI-MS)以来,喷雾器的基本设计经历了相对较小的修改。这种情况在2022年发生了改变,当时Takats及其合作者通过修改商用DESI系统的喷雾器,实现了解吸电流聚焦(DEFFI)喷雾器的设计,与传统的DESI-MSI喷雾器设计相比,空间分辨率和稳健性得到了显著提高。在这里,我们介绍了一种新型 DEFFI 喷雾器的设计,这种喷雾器可以用标准配件和连接器与铝制喷头组合而成,而铝制喷头可以在大多数机械车间加工。新设计代表了在所有供应商的质谱仪(包括 Orbitraps 和 FT-ICR 等高分辨率仪器)上改进 DESI-MSI 的一种经济高效的方法。新型 DEFFI 喷雾器在 QExactive Orbitrap 质谱仪上进行了演示,与传统 DESI 喷雾器相比,离子产率大幅提高。离子产量的提高使DESI-MSI的离子注入时间缩短至5毫秒,从而实现了DESI-MSI的高速化。更重要的是,DEFFI 喷雾器提供了更坚固、更集中的喷雾,更易于使用,需要的优化也更少。与之前对传统 DESI 设计的修改相比,它能以有限的努力提供高空间分辨率。对大鼠睾丸的成像像素可低至 12 μm,表明空间分辨率约为 30 μm,有进一步提高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. Improved Rapid Equilibrium Dialysis-Mass Spectrometry (RED-MS) Method for Measuring Small Molecule-Protein Complex Binding Affinities in Solution. Quantitative Analysis of Drugs in a Mimetic Tissue Model Using Nano-DESI on a Triple Quadrupole Mass Spectrometer. Development of a Novel Label-Free Subunit HILIC-MS Method for Domain-Specific Free Thiol Identification and Quantitation in Therapeutic Monoclonal Antibodies. Single Cell MALDI-MSI Analysis of Lipids and Proteins within a Replicative Senescence Fibroblast Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1