Bianca Gomes Dos Reis, Graziela Schmitt Becker, Desiree Padilha Marchetti, Daniella de Moura Coelho, Angela Sitta, Moacir Wajner, Carmen Regla Vargas
{"title":"Evidence That Long-Term Treatment Prevents Tissue Oxidative Damage in Patients With Inherited Disorders of the Propionate Pathway.","authors":"Bianca Gomes Dos Reis, Graziela Schmitt Becker, Desiree Padilha Marchetti, Daniella de Moura Coelho, Angela Sitta, Moacir Wajner, Carmen Regla Vargas","doi":"10.1002/ajmg.a.63893","DOIUrl":null,"url":null,"abstract":"<p><p>Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders clinically characterized by metabolic decompensation associated with life-threatening encephalopathic episodes in the neonatal period. Adequate and rapid therapeutic management is essential for patients' survival and prognosis. In this study, a restricted protein diet associated with L-carnitine (LC) supplementation was shown to decrease mortality and morbidity in patients affected by these disorders probably by decreasing the accumulation of the major metabolites and therefore their toxicity. Since oxidative stress was proposed as a contributing mechanism of tissue damage in PAcidemia and MMAcidemia and LC has potent antioxidant properties, our objective in this work was to investigate the effects of a long-term therapy consisting of reduced protein intake associated with LC supplementation on oxidative damage markers in patients affected by these diseases. We measured urinary isoprostanes, di-tyrosine, and oxidized guanine species, which reflect oxidative damage to lipids, proteins, and DNA/RNA, respectively, as well as the concentrations of NO products (nitrate plus nitrite) in patients untreated or submitted to short-term or a long-term treatment. Results revealed significant increases of isoprostanes, di-tyrosine, and oxidized guanine species, as well as a moderate nonsignificant increase of NO levels in the untreated patients, relatively to controls. Furthermore, these altered markers were attenuated after short-term treatment and normalized after prolonged treatment. In conclusion, data from this work show for the first time that long-standing treatment of patients with disorders of the propionate pathway can protect against oxidative damage. However, it remains to be elucidated whether oxidative stress identified in this study directly correlates with the clinical conditions of the affected patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63893","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders clinically characterized by metabolic decompensation associated with life-threatening encephalopathic episodes in the neonatal period. Adequate and rapid therapeutic management is essential for patients' survival and prognosis. In this study, a restricted protein diet associated with L-carnitine (LC) supplementation was shown to decrease mortality and morbidity in patients affected by these disorders probably by decreasing the accumulation of the major metabolites and therefore their toxicity. Since oxidative stress was proposed as a contributing mechanism of tissue damage in PAcidemia and MMAcidemia and LC has potent antioxidant properties, our objective in this work was to investigate the effects of a long-term therapy consisting of reduced protein intake associated with LC supplementation on oxidative damage markers in patients affected by these diseases. We measured urinary isoprostanes, di-tyrosine, and oxidized guanine species, which reflect oxidative damage to lipids, proteins, and DNA/RNA, respectively, as well as the concentrations of NO products (nitrate plus nitrite) in patients untreated or submitted to short-term or a long-term treatment. Results revealed significant increases of isoprostanes, di-tyrosine, and oxidized guanine species, as well as a moderate nonsignificant increase of NO levels in the untreated patients, relatively to controls. Furthermore, these altered markers were attenuated after short-term treatment and normalized after prolonged treatment. In conclusion, data from this work show for the first time that long-standing treatment of patients with disorders of the propionate pathway can protect against oxidative damage. However, it remains to be elucidated whether oxidative stress identified in this study directly correlates with the clinical conditions of the affected patients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.