Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2024-10-03 DOI:10.1177/00037028241277897
Jafet Cárdenas-Escudero, David Galán-Madruga, Jorge O Cáceres
{"title":"Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment.","authors":"Jafet Cárdenas-Escudero, David Galán-Madruga, Jorge O Cáceres","doi":"10.1177/00037028241277897","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241277897","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光诱导击穿光谱法作为骨骼分类和个体重新分配的精确法医工具。
本文详细讨论了迄今为止关于应用激光诱导击穿光谱法(LIBS)和监督分类法对混合骨骸进行个体重新定位的证据。专门的骨化学研究表明,骨元素成分适合作为独特的个体识别标志。鉴于有广泛的文献记载,LIBS 技术能够提供元素发射光谱,被认为是所分析样本的元素指纹,因此我们对该技术的分析潜力进行了评估,以调查混合骨骸的环境,对其进行个体重新归类。LIBS 骨分析包括直接烧蚀骨样本表面或内部结构的微米部分。不过,现有的证据表明,要进行可靠、准确和稳健的骨骼分类,必须采用适当的方法处理 LIBS 光谱信息。在比较使用光谱化学 LIBS 数据进行个体再关联的七种不同监督分类方法的性能时,那些采用基于人工智能算法的方法产生了分析上确凿的结果,具体而言,个体再关联的准确率、灵敏度和稳健性都达到了 100%。与 LIBS 相比,用于相关目的的其他技术在稳健性、灵敏度和准确性方面表现出有限的性能,而且这些结果因分类中使用的骨骼类型而异。现有文献证明,LIBS 技术适用于以快速、简单和具有成本效益的方式对遗骨进行可靠的个体再关联,而无需对样本进行复杂的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Neurodevelopmental Process Monitoring of Cytosine Arabinoside-Exposed Neurons Using Raman Spectroscopy. Wheat Flour Discrimination Using Two-Dimensional Correlation Spectroscopy and Deep Learning. Developing Correction Methods by Revisiting the Concept of Effective Thickness in Attenuated Total Reflection Spectroscopy. Non-destructive Analytical Study of Raman Spectra Variations and Mechanisms of Calcite and Aragonite in Modern and Fossilized Oysters. Perfluorodecanethiol-Functionalized Silver Nanoparticles on Polyester Films as High-Performance Surface-Enhanced Raman Spectroscopy Substrates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1