Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Spectrometer Onboard the Perseverance Rover Enables Identification of a Ubiquitous Martian Spectral Component.
Ryan S Jakubek, Andrea Corpolongo, Rohit Bhartia, Richard V Morris, Kyle Uckert, Sanford A Asher, Aaron S Burton, Marc D Fries, Kevin Hand, William F Hug, Carina Lee, Francis M McCubbin, Eva L Scheller, Sunanda Sharma, Sandra Siljeström, Andrew Steele
{"title":"Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Spectrometer Onboard the <i>Perseverance</i> Rover Enables Identification of a Ubiquitous Martian Spectral Component.","authors":"Ryan S Jakubek, Andrea Corpolongo, Rohit Bhartia, Richard V Morris, Kyle Uckert, Sanford A Asher, Aaron S Burton, Marc D Fries, Kevin Hand, William F Hug, Carina Lee, Francis M McCubbin, Eva L Scheller, Sunanda Sharma, Sandra Siljeström, Andrew Steele","doi":"10.1177/00037028241280081","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Perseverance</i> rover landed at Jezero crater, Mars, on 18 February 2021, with a payload of scientific instruments to examine Mars' past habitability, look for signs of past life, and process samples for future return to Earth. The instrument payload includes the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) deep ultraviolet Raman and fluorescence imaging spectrometer designed to detect, characterize, and map the presence of organics and minerals on the Martian surface. Operation and engineering constraints sometimes result in the acquisition of spectra with features near the detection limit. It is therefore important to separate instrumental (background) spectral components and spectral components inherent to Martian surface materials. For SHERLOC, the instrumental background is assessed by collecting spectra in the stowed-arm configuration where the instrument is pointed at the Martian nighttime sky with no surface sample present in its optical path. These measurements reveal weak Raman and fluorescence background spectral signatures as well as charged-coupled device pixels prone to erroneous intensity spikes separate from cosmic rays. We quantitatively describe these features and provide a subtraction procedure to remove the spectral background from surface spectra. By identifying and accounting for the SHERLOC Raman background features within the median Raman spectra of Martian target scans, we find that the undefined silicate spectral feature interpreted to be either amorphous silicate or plagioclase feldspar is ubiquitously found in every Mars target Raman scan collected through Sol 751.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241280081"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241280081","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The Perseverance rover landed at Jezero crater, Mars, on 18 February 2021, with a payload of scientific instruments to examine Mars' past habitability, look for signs of past life, and process samples for future return to Earth. The instrument payload includes the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) deep ultraviolet Raman and fluorescence imaging spectrometer designed to detect, characterize, and map the presence of organics and minerals on the Martian surface. Operation and engineering constraints sometimes result in the acquisition of spectra with features near the detection limit. It is therefore important to separate instrumental (background) spectral components and spectral components inherent to Martian surface materials. For SHERLOC, the instrumental background is assessed by collecting spectra in the stowed-arm configuration where the instrument is pointed at the Martian nighttime sky with no surface sample present in its optical path. These measurements reveal weak Raman and fluorescence background spectral signatures as well as charged-coupled device pixels prone to erroneous intensity spikes separate from cosmic rays. We quantitatively describe these features and provide a subtraction procedure to remove the spectral background from surface spectra. By identifying and accounting for the SHERLOC Raman background features within the median Raman spectra of Martian target scans, we find that the undefined silicate spectral feature interpreted to be either amorphous silicate or plagioclase feldspar is ubiquitously found in every Mars target Raman scan collected through Sol 751.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”