{"title":"HM-chromanone attenuates obesity and adipose tissue inflammation by downregulating SREBP-1c and NF-κb pathway in high-fat diet-fed mice.","authors":"Bo Ra Moon, Jae Eun Park, Ji Sook Han","doi":"10.1080/13813455.2024.2399554","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Obese adipose tissue produces various pro-inflammatory cytokines that are major contributors to adipose tissue inflammation.</p><p><p><b>Objective:</b> The present study aimed to determine the effects of HM-chromanone (HMC) against obesity and adipose tissue inflammation in high-fat diet-fed mice.</p><p><p><b>Materials and methods:</b> Twenty-four C57BL/6J male mice were divided into three groups: ND (normal diet), HFD (high-fat diet), and HFD + HMC. The ND group was fed a normal diet, whereas the HFD and HFD + HMC groups were fed a high-fat diet. After 10 weeks of feeding, the animals were orally administered the treatments daily for 9 weeks. The ND and HFD group received distilled water as treatment. The HFD+HMC group was treated with HM-chromaone (50 mg/kg).</p><p><p><b>Results:</b> HM-chromanone administration decreased body weight, fat mass, and adipocyte diameter. HM-chromanone also improved plasma lipid profiles, decreased leptin levels, and increased adiponectin levels. The inhibiting effect of HM-chromanone on SREBP-1c, PPARγ, C/EBPα, and FAS decreased adipogenesis, thereby alleviating lipid accumulation. Furthermore, HM-chromanone administration exhibited a reduction in macrophage infiltration and the expression of pro-inflammatory cytokines. HM-chromanone suppressed the phosphorylation of IκBα and NF-κB, leading to the inhibition of iNOS and COX2 expressions, resulting in decreased inflammation in adipose tissue.</p><p><p><b>Discussion and conclusion:</b> These results highlight the anti-obesity and anti-inflammatory properties of HM-chromanone, achieved through the downregulation of the SREBP-1c and NF-κB pathway in high-fat diet-fed mice.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"1-9"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2024.2399554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Obese adipose tissue produces various pro-inflammatory cytokines that are major contributors to adipose tissue inflammation.
Objective: The present study aimed to determine the effects of HM-chromanone (HMC) against obesity and adipose tissue inflammation in high-fat diet-fed mice.
Materials and methods: Twenty-four C57BL/6J male mice were divided into three groups: ND (normal diet), HFD (high-fat diet), and HFD + HMC. The ND group was fed a normal diet, whereas the HFD and HFD + HMC groups were fed a high-fat diet. After 10 weeks of feeding, the animals were orally administered the treatments daily for 9 weeks. The ND and HFD group received distilled water as treatment. The HFD+HMC group was treated with HM-chromaone (50 mg/kg).
Results: HM-chromanone administration decreased body weight, fat mass, and adipocyte diameter. HM-chromanone also improved plasma lipid profiles, decreased leptin levels, and increased adiponectin levels. The inhibiting effect of HM-chromanone on SREBP-1c, PPARγ, C/EBPα, and FAS decreased adipogenesis, thereby alleviating lipid accumulation. Furthermore, HM-chromanone administration exhibited a reduction in macrophage infiltration and the expression of pro-inflammatory cytokines. HM-chromanone suppressed the phosphorylation of IκBα and NF-κB, leading to the inhibition of iNOS and COX2 expressions, resulting in decreased inflammation in adipose tissue.
Discussion and conclusion: These results highlight the anti-obesity and anti-inflammatory properties of HM-chromanone, achieved through the downregulation of the SREBP-1c and NF-κB pathway in high-fat diet-fed mice.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.