{"title":"NitraTh epitope-based neoantigen vaccines for effective tumor immunotherapy.","authors":"Wanli Zhang, Xupeiyao Shi, Shitong Huang, Qiumin Yu, Zijie Wu, Wenbin Xie, Binghua Li, Yanchao Xu, Zheng Gao, Guozhi Li, Qianqian Qian, Tiandi He, Jiaxue Zheng, Tingran Zhang, Yue Tong, Danni Deng, Xiangdong Gao, Hong Tian, Wenbing Yao","doi":"10.1007/s00262-024-03830-2","DOIUrl":null,"url":null,"abstract":"<p><p>Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4<sup>+</sup> T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4<sup>+</sup> T cell epitopes. Utilizing nitrated helper T cell epitope containing p-nitrophenylalanine, termed \"NitraTh epitope,\" we have successfully engineered a series of tumor neoantigen vaccines capable of eliciting robust neoantigen-specific immune responses. With the help of NitraTh epitope, even mutations with low predicted affinity for MHC class I molecules were successfully induced to elicit neoantigen-specific responses. In H22 cell allograft and patient-derived xenograft (PDX) liver cancer mouse models, the NitraTh epitope-based neoantigen vaccines significantly suppressed tumor progression. More strikingly, through single-cell sequencing we found that the NitraTh epitope-based neoantigen vaccines regulate macrophage reprogramming and modulate macrophages to decrease the levels of the immunosuppressive molecule prostaglandin E2 (PGE2), which in turn reshapes the tumor immunosuppressive microenvironment. In summary, NitraTh epitope-based neoantigen vaccines possess the dual effects of potently activating neoantigen-specific immunity and alleviating immunosuppression, potentially providing a new paradigm for the design of tumor neoantigen vaccines.</p>","PeriodicalId":9595,"journal":{"name":"Cancer Immunology, Immunotherapy","volume":"73 12","pages":"245"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Immunology, Immunotherapy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s00262-024-03830-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4+ T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4+ T cell epitopes. Utilizing nitrated helper T cell epitope containing p-nitrophenylalanine, termed "NitraTh epitope," we have successfully engineered a series of tumor neoantigen vaccines capable of eliciting robust neoantigen-specific immune responses. With the help of NitraTh epitope, even mutations with low predicted affinity for MHC class I molecules were successfully induced to elicit neoantigen-specific responses. In H22 cell allograft and patient-derived xenograft (PDX) liver cancer mouse models, the NitraTh epitope-based neoantigen vaccines significantly suppressed tumor progression. More strikingly, through single-cell sequencing we found that the NitraTh epitope-based neoantigen vaccines regulate macrophage reprogramming and modulate macrophages to decrease the levels of the immunosuppressive molecule prostaglandin E2 (PGE2), which in turn reshapes the tumor immunosuppressive microenvironment. In summary, NitraTh epitope-based neoantigen vaccines possess the dual effects of potently activating neoantigen-specific immunity and alleviating immunosuppression, potentially providing a new paradigm for the design of tumor neoantigen vaccines.
期刊介绍:
Cancer Immunology, Immunotherapy has the basic aim of keeping readers informed of the latest research results in the fields of oncology and immunology. As knowledge expands, the scope of the journal has broadened to include more of the progress being made in the areas of biology concerned with biological response modifiers. This helps keep readers up to date on the latest advances in our understanding of tumor-host interactions.
The journal publishes short editorials including "position papers," general reviews, original articles, and short communications, providing a forum for the most current experimental and clinical advances in tumor immunology.