Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities.

IF 4 Q2 CELL & TISSUE ENGINEERING Cell Regeneration Pub Date : 2024-10-02 DOI:10.1186/s13619-024-00201-1
Yuan Yu, Kaixuan Lin, Haoyu Wu, Mingli Hu, Xuejie Yang, Jie Wang, Johannes Grillari, Jiekai Chen
{"title":"Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities.","authors":"Yuan Yu, Kaixuan Lin, Haoyu Wu, Mingli Hu, Xuejie Yang, Jie Wang, Johannes Grillari, Jiekai Chen","doi":"10.1186/s13619-024-00201-1","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-024-00201-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对衰老和 COVID-19 中的衰老细胞:从细胞机制到治疗机会。
COVID-19 大流行已造成全球健康危机和重大社会经济负担。虽然大多数人会出现轻微或非特异性症状,但老年人出现严重症状和危及生命的并发症的风险更高。对与临床严重性相关的关键因素进行探讨,可以发现衰老的关键特征,如细胞衰老、免疫失调、代谢改变和再生潜能受损,会导致肺部组织稳态的破坏和更糟糕的临床结果。衰老分解药物和衰老形态药物是旨在消除衰老细胞或减少相关表型的抗衰老治疗药物,在缓解与衰老相关的功能障碍方面已显示出前景,并为治疗与衰老有某些共同潜在机制的疾病(包括 COVID-19)提供了一种新方法。本综述总结了目前对衰老在 COVID-19 进展中的作用的认识,并重点介绍了抗衰老药物的最新研究成果,这些药物可重新用于 COVID-19 的治疗,以补充现有疗法的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
期刊最新文献
Application and new findings of scRNA-seq and ST-seq in prostate cancer. Beyond resorption: osteoclasts as drivers of bone formation. Subtype-specific neurons from patient iPSCs display distinct neuropathological features of Alzheimer's disease. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. Chromatin remodeling in tissue stem cell fate determination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1