Frontoparietal atrophy trajectories in cognitively unimpaired elderly individuals using longitudinal Bayesian clustering

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-01 DOI:10.1016/j.compbiomed.2024.109190
G. Lorenzon , K. Poulakis , R. Mohanty , M. Kivipelto , M. Eriksdotter , D. Ferreira , E. Westman , for the Alzheimer's Disease Neuroimaging Initiative
{"title":"Frontoparietal atrophy trajectories in cognitively unimpaired elderly individuals using longitudinal Bayesian clustering","authors":"G. Lorenzon ,&nbsp;K. Poulakis ,&nbsp;R. Mohanty ,&nbsp;M. Kivipelto ,&nbsp;M. Eriksdotter ,&nbsp;D. Ferreira ,&nbsp;E. Westman ,&nbsp;for the Alzheimer's Disease Neuroimaging Initiative","doi":"10.1016/j.compbiomed.2024.109190","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Frontal and/or parietal atrophy has been reported during aging. To disentangle the heterogeneity previously observed, this study aimed to uncover different clusters of grey matter profiles and trajectories within cognitively unimpaired individuals.</div></div><div><h3>Methods</h3><div>Structural magnetic resonance imaging (MRI) data of 307 Aβ-negative cognitively unimpaired individuals were modelled between ages 60–85 from three cohorts worldwide. We applied unsupervised clustering using a novel longitudinal Bayesian approach and characterized the clusters' cerebrovascular and cognitive profiles.</div></div><div><h3>Results</h3><div>Four clusters were identified with different grey matter profiles and atrophy trajectories. Differences were mainly observed in frontal and parietal brain regions. These distinct frontoparietal grey matter profiles and longitudinal trajectories were differently associated with cerebrovascular burden and cognitive decline.</div></div><div><h3>Discussion</h3><div>Our findings suggest a conciliation of the frontal and parietal theories of aging, uncovering coexisting frontoparietal GM patterns. This could have important future implications for better stratification and identification of at-risk individuals.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"Article 109190"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012757","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Frontal and/or parietal atrophy has been reported during aging. To disentangle the heterogeneity previously observed, this study aimed to uncover different clusters of grey matter profiles and trajectories within cognitively unimpaired individuals.

Methods

Structural magnetic resonance imaging (MRI) data of 307 Aβ-negative cognitively unimpaired individuals were modelled between ages 60–85 from three cohorts worldwide. We applied unsupervised clustering using a novel longitudinal Bayesian approach and characterized the clusters' cerebrovascular and cognitive profiles.

Results

Four clusters were identified with different grey matter profiles and atrophy trajectories. Differences were mainly observed in frontal and parietal brain regions. These distinct frontoparietal grey matter profiles and longitudinal trajectories were differently associated with cerebrovascular burden and cognitive decline.

Discussion

Our findings suggest a conciliation of the frontal and parietal theories of aging, uncovering coexisting frontoparietal GM patterns. This could have important future implications for better stratification and identification of at-risk individuals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向贝叶斯聚类研究认知功能未受损的老年人的额顶叶萎缩轨迹。
简介额叶和/或顶叶在衰老过程中出现萎缩。为了揭示之前观察到的异质性,本研究旨在发现认知功能未受损个体的灰质特征和轨迹的不同集群:对全球三个队列中年龄在 60-85 岁之间的 307 名 Aβ 阴性认知功能未受损者的结构性磁共振成像(MRI)数据进行建模。我们采用一种新颖的纵向贝叶斯方法进行了无监督聚类,并描述了这些聚类的脑血管和认知特征:结果:我们发现了四个具有不同灰质特征和萎缩轨迹的集群。主要在额叶和顶叶脑区观察到差异。这些不同的额顶叶灰质特征和纵向轨迹与脑血管负担和认知能力下降有着不同的关联:讨论:我们的研究结果表明,额叶和顶叶衰老理论是一致的,发现了共存的额顶灰质模式。这对未来更好地分层和识别高危人群具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1