Chi-Wen Jao, Yu-Te Wu, Jiann-Horng Yeh, Yuh-Feng Tsai, Chen-Yu Hsiao, Chi Ieong Lau
{"title":"Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis","authors":"Chi-Wen Jao, Yu-Te Wu, Jiann-Horng Yeh, Yuh-Feng Tsai, Chen-Yu Hsiao, Chi Ieong Lau","doi":"10.1111/ejn.16557","DOIUrl":null,"url":null,"abstract":"<p>Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan–Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 9","pages":"6254-6266"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.16557","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan–Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.