Event-Triggered Data-Driven Security Formation Control for Quadrotors Under Denial-of-Service Attacks and Communication Faults.

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-10-02 DOI:10.1109/TCYB.2024.3467178
Ziming Ren, Hao Liu, Guanghui Wen, Jinhu Lu
{"title":"Event-Triggered Data-Driven Security Formation Control for Quadrotors Under Denial-of-Service Attacks and Communication Faults.","authors":"Ziming Ren, Hao Liu, Guanghui Wen, Jinhu Lu","doi":"10.1109/TCYB.2024.3467178","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, the security formation control problem is investigated for underactuated quadrotors involving nonlinear coupled dynamics, subject to denial-of-service (DoS) attacks and uncertain communication faults. A security formation control method is proposed, including a distributed resilient observer and a hierarchical data-driven controller. The observer with an adaptive event-triggered mechanism is developed to restrain the influence of DoS and communication faults on interaction information among quadrotors, and Zeno behavior of all observers can be avoided. The optimal control laws are learned iteratively based on observation data and system data by utilizing reinforcement learning without knowledge of system dynamics. The stability of the constructed closed-loop control system is proven, and sufficient conditions are established for the unreliable network. Simulation results demonstrate the advantages of the proposed security control method.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2024.3467178","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the security formation control problem is investigated for underactuated quadrotors involving nonlinear coupled dynamics, subject to denial-of-service (DoS) attacks and uncertain communication faults. A security formation control method is proposed, including a distributed resilient observer and a hierarchical data-driven controller. The observer with an adaptive event-triggered mechanism is developed to restrain the influence of DoS and communication faults on interaction information among quadrotors, and Zeno behavior of all observers can be avoided. The optimal control laws are learned iteratively based on observation data and system data by utilizing reinforcement learning without knowledge of system dynamics. The stability of the constructed closed-loop control system is proven, and sufficient conditions are established for the unreliable network. Simulation results demonstrate the advantages of the proposed security control method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拒绝服务攻击和通信故障情况下四旋翼飞行器的事件触发数据驱动安全编队控制。
本文研究了涉及非线性耦合动力学、受拒绝服务(DoS)攻击和不确定通信故障影响的欠驱动四旋翼飞行器的安全编队控制问题。本文提出了一种安全编队控制方法,包括分布式弹性观测器和分层数据驱动控制器。开发了具有自适应事件触发机制的观测器,以抑制 DoS 和通信故障对四旋翼飞行器之间交互信息的影响,并可避免所有观测器的 Zeno 行为。在不了解系统动态的情况下,利用强化学习,根据观测数据和系统数据迭代学习最优控制法则。构建的闭环控制系统的稳定性得到了证明,并为不可靠网络建立了充分条件。仿真结果证明了所提出的安全控制方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
An Efficient Dynamic Resource Allocation Framework for Evolutionary Bilevel Optimization Angle Rigidity-Based Communication-Free Adaptive Formation Control for Nonlinear Multiagent Systems With Prescribed Performance T3DNet: Compressing Point Cloud Models for Lightweight 3-D Recognition Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1