Ayush Kumar, Hira Goel, Christi Wisniewski, Tao Wang, Yansong Geng, Mengdie Wang, Shivam Goel, Kai Hu, Rui Li, Lihua J Zhu, Jennifer L Clark, Lindsay M Ferreira, Michael Brehm, Thomas J Fitzgerald, Arthur M Mercurio
{"title":"Neuropilin-2 expressing cells in breast cancer are S-nitrosylation hubs that mitigate radiation-induced oxidative stress.","authors":"Ayush Kumar, Hira Goel, Christi Wisniewski, Tao Wang, Yansong Geng, Mengdie Wang, Shivam Goel, Kai Hu, Rui Li, Lihua J Zhu, Jennifer L Clark, Lindsay M Ferreira, Michael Brehm, Thomas J Fitzgerald, Arthur M Mercurio","doi":"10.1172/JCI181368","DOIUrl":null,"url":null,"abstract":"<p><p>The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI181368","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.