Diffraction efficiency management by complex binary gratings.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-10-01 DOI:10.1364/OL.531872
Dafne Amaya, Edgar Rueda, Pablo Vaveliuk
{"title":"Diffraction efficiency management by complex binary gratings.","authors":"Dafne Amaya, Edgar Rueda, Pablo Vaveliuk","doi":"10.1364/OL.531872","DOIUrl":null,"url":null,"abstract":"<p><p>The diffraction efficiencies of a complex binary diffraction grating with a rectangular profile are controlled through the steps' phases, amplitudes, and duty cycle, based on analytical expressions. It is demonstrated that the zeroth-diffraction order can be canceled for any arbitrary value of the duty cycle, provided that a π-phase difference is imposed, along with a specific ratio of the steps' amplitudes. This feature is not feasible for separated amplitude-only and phase-only rectangular binary gratings in the context of one-dimensional gratings. In this framework, a key analytic relationship between the duty cycle and the steps' amplitude ratio is derived, allowing the design of such gratings with this desired feature across a wide range of conditions, not limited to a duty cycle of 0.5. Concerning the higher diffraction orders, it is proved that their intensities cancel or maximize for fixed duty cycle no matter the amplitude and phase values of the steps. The intensity of the m-th diffraction order possesses m maxima and m - 1 zeros on the full range of the duty cycle. All these features were corroborated experimentally. The broad insight of such a grating allows the design of gratings with diffraction efficiencies tailored for specific applications.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.531872","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The diffraction efficiencies of a complex binary diffraction grating with a rectangular profile are controlled through the steps' phases, amplitudes, and duty cycle, based on analytical expressions. It is demonstrated that the zeroth-diffraction order can be canceled for any arbitrary value of the duty cycle, provided that a π-phase difference is imposed, along with a specific ratio of the steps' amplitudes. This feature is not feasible for separated amplitude-only and phase-only rectangular binary gratings in the context of one-dimensional gratings. In this framework, a key analytic relationship between the duty cycle and the steps' amplitude ratio is derived, allowing the design of such gratings with this desired feature across a wide range of conditions, not limited to a duty cycle of 0.5. Concerning the higher diffraction orders, it is proved that their intensities cancel or maximize for fixed duty cycle no matter the amplitude and phase values of the steps. The intensity of the m-th diffraction order possesses m maxima and m - 1 zeros on the full range of the duty cycle. All these features were corroborated experimentally. The broad insight of such a grating allows the design of gratings with diffraction efficiencies tailored for specific applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂二元光栅的衍射效率管理
根据分析表达式,通过阶跃相位、振幅和占空比来控制矩形轮廓复杂二元衍射光栅的衍射效率。结果表明,只要施加 π 相位差和特定的阶跃振幅比,在占空比为任意值的情况下,都能消除第零衍射阶。在一维光栅的背景下,这一特性对于只分离振幅和只分离相位的矩形二元光栅来说是不可行的。在这一框架中,得出了占空比和阶跃振幅比之间的关键分析关系,从而可以在多种条件下设计出具有这一理想特性的光栅,而不仅限于占空比为0.5的条件。关于更高的衍射阶数,研究证明,无论阶数的振幅和相位值如何,在固定占空比的情况下,它们的强度都会抵消或最大化。第 m 个衍射阶的强度在整个占空比范围内有 m 个最大值和 m - 1 个零值。所有这些特征都在实验中得到了证实。这种光栅具有广阔的洞察力,可根据特定应用设计具有衍射效率的光栅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
Horizontal aluminum magneto-plasmonic metasurface for efficient magneto-optical Kerr modulation and sensing in the ultraviolet range. Integrated terahertz topological valley-locked power divider with arbitrary power ratios. Linear-coupling-induced double-period pulsating vector solitons in lasers. Low-latency 100 Gb/s PAM-4 PON with a 42.5 dB power budget over the 20 km anti-resonant hollow-core fiber. Mathieu ray-wave structured light with self-healing elliptical accelerating vortices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1