{"title":"All-in-one bimodal DNA and RNA next-generation sequencing panel for integrative diagnosis of glioma","authors":"Nayuta Higa , Toshiaki Akahane , Mari Kirishima , Hajime Yonezawa , Ryutaro Makino , Hiroyuki Uchida , Seiya Yokoyama , Tomoko Takajo , Ryosuke Otsuji , Yutaka Fujioka , Yuhei Sangatsuda , Daisuke Kuga , Hitoshi Yamahata , Nobuhiro Hata , Nobutaka Horie , Masamichi Kurosaki , Junkoh Yamamoto , Koji Yoshimoto , Akihide Tanimoto , Ryosuke Hanaya","doi":"10.1016/j.prp.2024.155598","DOIUrl":null,"url":null,"abstract":"<div><div>Previously, we constructed a DNA-based next-generation sequencing (NGS) panel for an integrated diagnosis of gliomas according to the 2021 World Health Organization classification system. The aim of the current study was to evaluate the feasibility of a modified panel to include fusion gene detection via RNA-based analysis. Using this bimodal DNA/RNA panel, we analyzed 210 cases of gliomas and others to identify fusion genes in addition to gene alterations, including <em>TERT</em> promoter (<em>TERTp</em>) mutation and 1p/19q co-deletion, in formalin-fixed paraffin-embedded tissues. Of the 210 patients, fusion genes were detected in tumors of 35 patients. Eighteen of 112 glioblastomas (GBs) harbored fusion genes, including <em>EGFR</em> and <em>FGFR3</em> fusions. In <em>IDH</em>-mutant astrocytoma, 6 of 30 cases showed fusion genes such as <em>MET</em> and <em>NTRK2</em> fusions. Eleven molecular GBs and 20 not-elsewhere-classified cases harbored no gene fusions. Other 11 tumors including ependymoma, pilocytic astrocytoma, diffuse hemispheric glioma, infant-type hemispheric glioma, and solitary fibrous tumors exhibited diagnostic fusion genes. Overall, our results suggest that the all-in-one bimodal DNA/RNA panel is reliable for detecting diagnostic gene alterations in accordance with the latest WHO classification. The integrative pathological and molecular strategy could be valuable in confirmation of diagnosis and selection of treatment options for brain tumors.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"263 ","pages":"Article 155598"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824005090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, we constructed a DNA-based next-generation sequencing (NGS) panel for an integrated diagnosis of gliomas according to the 2021 World Health Organization classification system. The aim of the current study was to evaluate the feasibility of a modified panel to include fusion gene detection via RNA-based analysis. Using this bimodal DNA/RNA panel, we analyzed 210 cases of gliomas and others to identify fusion genes in addition to gene alterations, including TERT promoter (TERTp) mutation and 1p/19q co-deletion, in formalin-fixed paraffin-embedded tissues. Of the 210 patients, fusion genes were detected in tumors of 35 patients. Eighteen of 112 glioblastomas (GBs) harbored fusion genes, including EGFR and FGFR3 fusions. In IDH-mutant astrocytoma, 6 of 30 cases showed fusion genes such as MET and NTRK2 fusions. Eleven molecular GBs and 20 not-elsewhere-classified cases harbored no gene fusions. Other 11 tumors including ependymoma, pilocytic astrocytoma, diffuse hemispheric glioma, infant-type hemispheric glioma, and solitary fibrous tumors exhibited diagnostic fusion genes. Overall, our results suggest that the all-in-one bimodal DNA/RNA panel is reliable for detecting diagnostic gene alterations in accordance with the latest WHO classification. The integrative pathological and molecular strategy could be valuable in confirmation of diagnosis and selection of treatment options for brain tumors.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.