Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-10-01 DOI:10.1371/journal.pbio.3002822
Vanessa Kay Miller, Kendal Broadie
{"title":"Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination.","authors":"Vanessa Kay Miller, Kendal Broadie","doi":"10.1371/journal.pbio.3002822","DOIUrl":null,"url":null,"abstract":"<p><p>The optimization of brain circuit connectivity based on initial environmental input occurs during critical periods characterized by sensory experience-dependent, temporally restricted, and transiently reversible synapse elimination. This precise, targeted synaptic pruning mechanism is mediated by glial phagocytosis. Serotonin signaling has prominent, foundational roles in the brain, but functions in glia, or in experience-dependent brain circuit synaptic connectivity remodeling, have been relatively unknown. Here, we discover that serotonergic signaling between glia is essential for olfactory experience-dependent synaptic glomerulus pruning restricted to a well-defined Drosophila critical period. We find that experience-dependent serotonin signaling is restricted to the critical period, with both (1) serotonin production and (2) 5-HT2A receptors specifically in glia, but not neurons, absolutely required for targeted synaptic glomerulus pruning. We discover that glial 5-HT2A receptor signaling limits the experience-dependent synaptic connectivity pruning in the critical period and that conditional reexpression of 5-HT2A receptors within adult glia reestablishes \"critical period-like\" experience-dependent synaptic glomerulus pruning at maturity. These results reveal an essential requirement for glial serotonergic signaling mediated by 5-HT2A receptors for experience-dependent synapse elimination.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002822"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002822","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The optimization of brain circuit connectivity based on initial environmental input occurs during critical periods characterized by sensory experience-dependent, temporally restricted, and transiently reversible synapse elimination. This precise, targeted synaptic pruning mechanism is mediated by glial phagocytosis. Serotonin signaling has prominent, foundational roles in the brain, but functions in glia, or in experience-dependent brain circuit synaptic connectivity remodeling, have been relatively unknown. Here, we discover that serotonergic signaling between glia is essential for olfactory experience-dependent synaptic glomerulus pruning restricted to a well-defined Drosophila critical period. We find that experience-dependent serotonin signaling is restricted to the critical period, with both (1) serotonin production and (2) 5-HT2A receptors specifically in glia, but not neurons, absolutely required for targeted synaptic glomerulus pruning. We discover that glial 5-HT2A receptor signaling limits the experience-dependent synaptic connectivity pruning in the critical period and that conditional reexpression of 5-HT2A receptors within adult glia reestablishes "critical period-like" experience-dependent synaptic glomerulus pruning at maturity. These results reveal an essential requirement for glial serotonergic signaling mediated by 5-HT2A receptors for experience-dependent synapse elimination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经胶质中依赖经验的血清素能信号调节定向突触消除。
基于初始环境输入的脑回路连接优化发生在关键时期,其特点是依赖于感觉经验、受时间限制和瞬时可逆的突触消除。这种精确、有针对性的突触修剪机制是由神经胶质吞噬作用介导的。5-羟色胺信号在大脑中具有显著的基础性作用,但在神经胶质中的功能或在依赖经验的脑回路突触连接重塑中的功能却相对未知。在这里,我们发现神经胶质细胞之间的血清素能信号传导对于嗅觉经验依赖性突触胶质细胞修剪至关重要,这种修剪仅限于果蝇的一个明确定义的临界期。我们发现,依赖经验的血清素信号传导仅限于临界期,而(1)血清素的产生和(2)特异性地存在于神经胶质细胞而非神经元中的5-HT2A受体对于有针对性的突触小球修剪是绝对必需的。我们发现,神经胶质细胞 5-HT2A 受体信号限制了临界期依赖经验的突触连接修剪,而成年神经胶质细胞内 5-HT2A 受体的有条件再表达可在成熟期重建 "类似临界期 "的依赖经验的突触球修剪。这些结果揭示了经验依赖性突触消除对由5-HT2A受体介导的神经胶质5-羟色胺能信号的基本要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Correction: Dog-human vocal interactions match dogs' sensory-motor tuning. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. Trajectories of human brain functional connectome maturation across the birth transition. Dopamine neurons that inform Drosophila olfactory memory have distinct, acute functions driving attraction and aversion. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1