Yan-Zhu Quan , Jing-He Wang , Si-Hui Zhang , Guang-Nan Jin , Jing-Mei Lu , Yi-Ming Liu , Hong-Yan Gao , Jin-Yi Zhou , Bing-Zhe Wang , Yan Xin , Yue-Xian Cui , Xiang Xu , Lian-Xun Piao
{"title":"The intervention mechanism of Tanshinone IIA in alleviating neuronal injury induced by HMGB1 or TNF-α-mediated microglial activation","authors":"Yan-Zhu Quan , Jing-He Wang , Si-Hui Zhang , Guang-Nan Jin , Jing-Mei Lu , Yi-Ming Liu , Hong-Yan Gao , Jin-Yi Zhou , Bing-Zhe Wang , Yan Xin , Yue-Xian Cui , Xiang Xu , Lian-Xun Piao","doi":"10.1016/j.tiv.2024.105950","DOIUrl":null,"url":null,"abstract":"<div><div>Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from <em>Salvia miltiorrhiza</em>, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"101 ","pages":"Article 105950"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001802","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from Salvia miltiorrhiza, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.