Capturing the illusive ring-shaped intermediates in Aβ42 amyloid formation.

IF 3.4 Q2 BIOPHYSICS Biophysics reviews Pub Date : 2024-08-13 eCollection Date: 2024-09-01 DOI:10.1063/5.0222349
Yu Yuan, Xiaozhe Dong, Huan Wang, Feng Gai
{"title":"Capturing the illusive ring-shaped intermediates in A<b>β</b>42 amyloid formation.","authors":"Yu Yuan, Xiaozhe Dong, Huan Wang, Feng Gai","doi":"10.1063/5.0222349","DOIUrl":null,"url":null,"abstract":"<p><p>Protein/peptide amyloid fibril formation is associated with various neurodegenerative diseases and, hence, has been the subject of extensive studies. From a structure-evolution point of view, we now know a great deal about the initial and final states of this process; however, we know very little about its intermediate states. Herein, we employ liquid-phase transmission electron microscopy to directly visualize the formation of one of the intermediates formed during the aggregation process of an amyloid-forming peptide. As shown in figure, we find that Aβ42, the amyloid formation of which has been linked to the development of Alzheimer's disease, can populate a ring-shaped intermediate structure with a diameter of tens of nanometers; additionally, the air-liquid interface can \"catalyze\" the formation of amyloid fibrils.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"5 3","pages":"032104"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0222349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein/peptide amyloid fibril formation is associated with various neurodegenerative diseases and, hence, has been the subject of extensive studies. From a structure-evolution point of view, we now know a great deal about the initial and final states of this process; however, we know very little about its intermediate states. Herein, we employ liquid-phase transmission electron microscopy to directly visualize the formation of one of the intermediates formed during the aggregation process of an amyloid-forming peptide. As shown in figure, we find that Aβ42, the amyloid formation of which has been linked to the development of Alzheimer's disease, can populate a ring-shaped intermediate structure with a diameter of tens of nanometers; additionally, the air-liquid interface can "catalyze" the formation of amyloid fibrils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捕捉 Aβ42 淀粉样蛋白形成过程中虚幻的环形中间体
蛋白质/肽淀粉样纤维的形成与多种神经退行性疾病有关,因此一直是广泛研究的主题。从结构演化的角度来看,我们现在对这一过程的初始和最终状态有了很多了解,但对其中间状态却知之甚少。在这里,我们利用液相透射电子显微镜直接观察了淀粉样肽聚集过程中形成的一种中间状态。如图所示,我们发现 Aβ42(其淀粉样蛋白的形成与阿尔茨海默氏症的发病有关)可以形成直径达数十纳米的环形中间结构;此外,空气-液体界面还能 "催化 "淀粉样纤维的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊最新文献
Neural circuit mechanisms underlying dominance traits and social competition. The drug resistance feature of acute myeloid leukemia is related to the cell stiffness. Managing surface energy dynamics for enhanced axonal growth: An overview of present and future challenges. The mechanobiology of biomolecular condensates. Mesoscopic p53-rich clusters represent a new class of protein condensates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1