BLSAN: A Brain Lateralization-Guided Subject Adaptive Network for Motor Imagery Classification

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-20 DOI:10.1109/LSP.2024.3465348
Fulin Wei;Xueyuan Xu;Qing Li;Xiuxing Li;Xia Wu
{"title":"BLSAN: A Brain Lateralization-Guided Subject Adaptive Network for Motor Imagery Classification","authors":"Fulin Wei;Xueyuan Xu;Qing Li;Xiuxing Li;Xia Wu","doi":"10.1109/LSP.2024.3465348","DOIUrl":null,"url":null,"abstract":"A major challenge in motor imagery Brain-Computer Interfaces (MI-BCIs) arises from domain shift due to large individual differences. Currently, most cross-subject MI-BCI decoding methods rely on transfer learning to extract subject-shared features or align data distributions. However, these methods typically require all unlabeled data from the target subjects or labeled calibration data, which is unavailable in practical applications. To address this, we propose a brain lateralization-guided subject adaptive network, BLSAN, to enhance model generalization through local-global adversarial training. Specifically, two separate adversarial networks for left and right hemispheres are designed to reduce local differences, and features extracted from both hemispheres are combined for global adversarial training. Additionally, we design a confidence-based pseudo label generation method to enhance model discriminability. We validate the effectiveness of our approach on two public MI datasets, BCI Competition IV 2a and 2b, only with some unlabeled calibration data, which improves the practicality of MI-BCIs.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684550/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge in motor imagery Brain-Computer Interfaces (MI-BCIs) arises from domain shift due to large individual differences. Currently, most cross-subject MI-BCI decoding methods rely on transfer learning to extract subject-shared features or align data distributions. However, these methods typically require all unlabeled data from the target subjects or labeled calibration data, which is unavailable in practical applications. To address this, we propose a brain lateralization-guided subject adaptive network, BLSAN, to enhance model generalization through local-global adversarial training. Specifically, two separate adversarial networks for left and right hemispheres are designed to reduce local differences, and features extracted from both hemispheres are combined for global adversarial training. Additionally, we design a confidence-based pseudo label generation method to enhance model discriminability. We validate the effectiveness of our approach on two public MI datasets, BCI Competition IV 2a and 2b, only with some unlabeled calibration data, which improves the practicality of MI-BCIs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BLSAN:用于运动图像分类的大脑侧化引导的受试者自适应网络
运动图像脑机接口(MI-BCI)面临的一大挑战是个体差异较大导致的领域偏移。目前,大多数跨受试者 MI-BCI 解码方法都依赖于迁移学习来提取受试者共享特征或调整数据分布。然而,这些方法通常需要来自目标受试者的所有未标记数据或标记校准数据,这在实际应用中是不可用的。为了解决这个问题,我们提出了一种大脑侧向化引导的主体自适应网络(BLSAN),通过局部-全局对抗训练来增强模型泛化。具体来说,我们为左右半球设计了两个独立的对抗网络,以减少局部差异,并将从两个半球提取的特征结合起来进行全局对抗训练。此外,我们还设计了一种基于置信度的伪标签生成方法,以增强模型的可区分性。我们在 BCI Competition IV 2a 和 2b 两个公开的 MI 数据集上验证了我们的方法的有效性,仅使用了一些未标记的校准数据,这提高了 MI-BCI 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1