{"title":"BLSAN: A Brain Lateralization-Guided Subject Adaptive Network for Motor Imagery Classification","authors":"Fulin Wei;Xueyuan Xu;Qing Li;Xiuxing Li;Xia Wu","doi":"10.1109/LSP.2024.3465348","DOIUrl":null,"url":null,"abstract":"A major challenge in motor imagery Brain-Computer Interfaces (MI-BCIs) arises from domain shift due to large individual differences. Currently, most cross-subject MI-BCI decoding methods rely on transfer learning to extract subject-shared features or align data distributions. However, these methods typically require all unlabeled data from the target subjects or labeled calibration data, which is unavailable in practical applications. To address this, we propose a brain lateralization-guided subject adaptive network, BLSAN, to enhance model generalization through local-global adversarial training. Specifically, two separate adversarial networks for left and right hemispheres are designed to reduce local differences, and features extracted from both hemispheres are combined for global adversarial training. Additionally, we design a confidence-based pseudo label generation method to enhance model discriminability. We validate the effectiveness of our approach on two public MI datasets, BCI Competition IV 2a and 2b, only with some unlabeled calibration data, which improves the practicality of MI-BCIs.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684550/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A major challenge in motor imagery Brain-Computer Interfaces (MI-BCIs) arises from domain shift due to large individual differences. Currently, most cross-subject MI-BCI decoding methods rely on transfer learning to extract subject-shared features or align data distributions. However, these methods typically require all unlabeled data from the target subjects or labeled calibration data, which is unavailable in practical applications. To address this, we propose a brain lateralization-guided subject adaptive network, BLSAN, to enhance model generalization through local-global adversarial training. Specifically, two separate adversarial networks for left and right hemispheres are designed to reduce local differences, and features extracted from both hemispheres are combined for global adversarial training. Additionally, we design a confidence-based pseudo label generation method to enhance model discriminability. We validate the effectiveness of our approach on two public MI datasets, BCI Competition IV 2a and 2b, only with some unlabeled calibration data, which improves the practicality of MI-BCIs.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.