Space Target Recognition Based on Radar Network Systems With BiGRU-Transformer and Dual Graph Fusion Network

Yuan-Peng Zhang;Zhi-Hao Wang;Tai-Yang Liu;Yan Xie;Ying Luo
{"title":"Space Target Recognition Based on Radar Network Systems With BiGRU-Transformer and Dual Graph Fusion Network","authors":"Yuan-Peng Zhang;Zhi-Hao Wang;Tai-Yang Liu;Yan Xie;Ying Luo","doi":"10.1109/TRS.2024.3466134","DOIUrl":null,"url":null,"abstract":"Heterogeneous radar network systems can provide multiband and multiangle information about targets, enhancing the ability to recognize space targets. This article proposes a space target recognition method based on a bidirectional gated recurrent unit (BiGRU)-Transformer and dual graph fusion (BiGT-DGF) network. Through a temporal information extraction subnetwork, the BiGRU and Transformer are used to dynamically model a radar cross section (RCS) time series under multiple bands and angles, effectively exploiting both the local and global temporal dependencies. Through a spatial information extraction subnetwork, which integrates predefined graphs with self-adaptive graphs, the spatial dependencies between various radars are dynamically and adaptively captured. On this basis, the prediction output layer utilizes the spatiotemporal information extracted by the above two subnetworks to effectively recognize space targets. The experimental results show that the proposed method can reliably recognize space targets even under low signal-to-noise ratios (SNRs) and low pulse repetition frequencies.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"950-965"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689449/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous radar network systems can provide multiband and multiangle information about targets, enhancing the ability to recognize space targets. This article proposes a space target recognition method based on a bidirectional gated recurrent unit (BiGRU)-Transformer and dual graph fusion (BiGT-DGF) network. Through a temporal information extraction subnetwork, the BiGRU and Transformer are used to dynamically model a radar cross section (RCS) time series under multiple bands and angles, effectively exploiting both the local and global temporal dependencies. Through a spatial information extraction subnetwork, which integrates predefined graphs with self-adaptive graphs, the spatial dependencies between various radars are dynamically and adaptively captured. On this basis, the prediction output layer utilizes the spatiotemporal information extracted by the above two subnetworks to effectively recognize space targets. The experimental results show that the proposed method can reliably recognize space targets even under low signal-to-noise ratios (SNRs) and low pulse repetition frequencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于雷达网络系统的空间目标识别与 BiGRU 变换器和双图融合网络
异构雷达网络系统可以提供多波段、多角度的目标信息,从而提高识别空间目标的能力。本文提出了一种基于双向门控递归单元(BiGRU)-变换器和双图融合(BiGT-DGF)网络的空间目标识别方法。通过时间信息提取子网络,BiGRU 和 Transformer 被用来对多波段和多角度下的雷达截面(RCS)时间序列进行动态建模,有效地利用了局部和全局的时间依赖性。通过空间信息提取子网络,将预定义图与自适应图整合在一起,动态、自适应地捕捉各种雷达之间的空间依赖关系。在此基础上,预测输出层利用上述两个子网络提取的时空信息有效识别空间目标。实验结果表明,即使在信噪比(SNR)较低和脉冲重复频率较低的情况下,所提出的方法也能可靠地识别空间目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
5G-Based Passive Radar Utilizing Channel Response Estimated via Reference Signals A Log-Normal Complex-Amplitude Likelihood Ratio-Based TBD Method With Soft Orbit-Information Constraints for Tracking Space Targets With Space-Based Radar DeepEgo+: Unsynchronized Radar Sensor Fusion for Robust Vehicle Ego-Motion Estimation ClassiGAN: Joint Image Reconstruction and Classification in Computational Microwave Imaging Dual-Channel Joint SAR-Interferometry via Superresolution Spectral Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1