Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-10-03 DOI:10.1038/s41746-024-01260-z
Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee
{"title":"Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs","authors":"Bonnie T. Chao, Andrew T. Sage, Micheal C. McInnis, Jun Ma, Micah Grubert Van Iderstine, Xuanzi Zhou, Jerome Valero, Marcelo Cypel, Mingyao Liu, Bo Wang, Shaf Keshavjee","doi":"10.1038/s41746-024-01260-z","DOIUrl":null,"url":null,"abstract":"Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-7"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01260-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01260-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离体人肺X光片的独特特征提高肺移植预后的准确性
体外肺灌注(EVLP)可对人体肺部的移植适宜性进行高级评估。我们开发了一种基于卷积神经网络(CNN)的方法,用于分析迄今为止最大的一组离体肺部X光片。对 CNN 进行了训练,以处理来自 n = 650 个临床 EVLP 病例的 1300 张纵向射线照片。潜在特征被转化为主成分(PC),并与已知的放射学结果相关联。主成分与生理数据相结合,对临床结果进行分类:(1) 受体拔管时间为 72 小时;(2) ≥ 72 小时;(3) 肺部不适合移植。最高 PC 与浸润有明显相关性(Spearman R:0-72,p <0-0001),增加放射学 PC 能明显提高对临床结果的判别能力(准确率:73 vs 78%,p = 0-014)。因此,CNN 导出的肺部放射学特征为当前评估增添了大量价值。世界各地的 EVLP 中心都可以采用这种方法来利用放射学信息,而无需实时放射学专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Learning from the EHR to implement AI in healthcare A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders Systematic review to understand users perspectives on AI-enabled decision aids to inform shared decision making The quality and safety of using generative AI to produce patient-centred discharge instructions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1