{"title":"Blackout Mitigation via Physics-Guided RL","authors":"Anmol Dwivedi;Santiago Paternain;Ali Tajer","doi":"10.1109/TPWRS.2024.3472570","DOIUrl":null,"url":null,"abstract":"This paper considers the sequential design of remedial control actions in response to system anomalies to prevent blackouts. A physics-guided reinforcement learning (RL) framework is designed to identify effective sequences of real-time remedial look-ahead decisions accounting for the long-term impact on the system's stability. The paper considers a space of control actions involving both discrete-valued transmission line-switching decisions (line reconnections and removals) and continuous-valued generator adjustments. To identify an effective blackout mitigation policy, a physics-guided approach is designed that uses power-flow sensitivity factors associated with the power transmission network to guide the RL exploration during agent training. Comprehensive empirical evaluations using the open-source Grid2Op platform demonstrate the notable advantages of incorporating physical signals into RL decisions, establishing the gains of the proposed physics-guided approach compared to its black-box counterparts. One important observation is that strategically <italic>removing</i> transmission lines, in conjunction with multiple real-time generator adjustments, often renders effective long-term decisions that are likely to prevent or delay blackouts.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"40 3","pages":"2363-2375"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10704607/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the sequential design of remedial control actions in response to system anomalies to prevent blackouts. A physics-guided reinforcement learning (RL) framework is designed to identify effective sequences of real-time remedial look-ahead decisions accounting for the long-term impact on the system's stability. The paper considers a space of control actions involving both discrete-valued transmission line-switching decisions (line reconnections and removals) and continuous-valued generator adjustments. To identify an effective blackout mitigation policy, a physics-guided approach is designed that uses power-flow sensitivity factors associated with the power transmission network to guide the RL exploration during agent training. Comprehensive empirical evaluations using the open-source Grid2Op platform demonstrate the notable advantages of incorporating physical signals into RL decisions, establishing the gains of the proposed physics-guided approach compared to its black-box counterparts. One important observation is that strategically removing transmission lines, in conjunction with multiple real-time generator adjustments, often renders effective long-term decisions that are likely to prevent or delay blackouts.
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.