An RNA-centric view of transcription and genome organization

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2024-10-03 DOI:10.1016/j.molcel.2024.08.021
Jonathan E. Henninger, Richard A. Young
{"title":"An RNA-centric view of transcription and genome organization","authors":"Jonathan E. Henninger, Richard A. Young","doi":"10.1016/j.molcel.2024.08.021","DOIUrl":null,"url":null,"abstract":"Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"23 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.08.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 RNA 为中心的转录和基因组组织视角
转录调控的基本模式涉及在与特定基因相关的 DNA 元件上组装蛋白质复合物。这些集合体可能包括转录因子、辅助因子、RNA 聚合酶和各种染色质调节因子,它们形成了动态的空间分区,有助于基因调控和局部基因组结构。最近有证据表明,RNA 分子在基因调控和基因组结构中发挥着重要作用,从而改变了这种以 DNA 蛋白为中心的观点。在这里,我们讨论了 RNA 在多个水平上进行基因调控的证据,这些水平包括转录复合物和基因组分区的组装、活性基因的反馈调控、基因沉默以及蛋白激酶的控制。因此,我们提供了一种以 RNA 为中心的转录调控观点,它必须与更传统的以 DNA 蛋白为中心的基因调控和基因组结构观点并存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
AMPK: Balancing mitochondrial quality and quantity through opposite regulation of mitophagy pathways A major step forward toward high-resolution nanopore sequencing of full-length proteins m6A sites in the coding region trigger translation-dependent mRNA decay Flipping a switch on BRD4: How to control the do-it-all Lost in translation: Threonine dictates aggregation of CAT tails
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1