Controllable Magnetic Anisotropy in Two-Dimensional 1T-CrTe2 with Electrides Sublayer

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-09-30 DOI:10.1016/j.jallcom.2024.176814
Jianan Dong, Qilong Sun, Zesen Lei, Cui Jin, Ruishan Tan, Ying Dai
{"title":"Controllable Magnetic Anisotropy in Two-Dimensional 1T-CrTe2 with Electrides Sublayer","authors":"Jianan Dong, Qilong Sun, Zesen Lei, Cui Jin, Ruishan Tan, Ying Dai","doi":"10.1016/j.jallcom.2024.176814","DOIUrl":null,"url":null,"abstract":"Exploring the controlled magnetic anisotropy energy (MAE) in two-dimensional (2D) ferromagnets is an essential step towards the emergent magnetic tunnel junctions (MTJs) with robust storage stability and low-power consumption. In addition to the transitional charge doping method, we propose that stacking 2D ferromagnet 1T-CrTe<sub>2</sub> with electrides substrate can achieve not only the high interfacial charge transfer up to 5.24×10<sup>14<!-- --> </sup>cm<sup>-2</sup> and but also efficient modification of magnetic behaviors via interfacial engineering. Employing first-principles calculations, we show that the 1T-CrTe<sub>2</sub>/Ca<sub>2</sub>N(Y<sub>2</sub>C) heterostructures exhibit a significant reduction in MAE with a spin reorientation. Notably, the synergistic effect of internal charge transfer, external strain and charge doping shows a significant influence on the magnetic behaviors of the bilayer structures, enabling an efficient modulating of their MAE with distinct dependences. We elucidate that the underlying mechanism is the synergistic effect induced alteration of the spin-polarized <em>p</em><sub><em>x</em></sub> and <em>p</em><sub><em>y</em></sub> states on the Te atom located at the interfaces, which in turn changes the competitive spin-orbit coupling (SOC) contributions to the MAE. These findings provide a practical path toward the controllable MAE in 2D ferromagnets, and make the proposed heterostructures promising candidates for emergent spintronic devices.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.176814","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring the controlled magnetic anisotropy energy (MAE) in two-dimensional (2D) ferromagnets is an essential step towards the emergent magnetic tunnel junctions (MTJs) with robust storage stability and low-power consumption. In addition to the transitional charge doping method, we propose that stacking 2D ferromagnet 1T-CrTe2 with electrides substrate can achieve not only the high interfacial charge transfer up to 5.24×1014 cm-2 and but also efficient modification of magnetic behaviors via interfacial engineering. Employing first-principles calculations, we show that the 1T-CrTe2/Ca2N(Y2C) heterostructures exhibit a significant reduction in MAE with a spin reorientation. Notably, the synergistic effect of internal charge transfer, external strain and charge doping shows a significant influence on the magnetic behaviors of the bilayer structures, enabling an efficient modulating of their MAE with distinct dependences. We elucidate that the underlying mechanism is the synergistic effect induced alteration of the spin-polarized px and py states on the Te atom located at the interfaces, which in turn changes the competitive spin-orbit coupling (SOC) contributions to the MAE. These findings provide a practical path toward the controllable MAE in 2D ferromagnets, and make the proposed heterostructures promising candidates for emergent spintronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 1T-CrTe2 中的可控磁各向异性(带电荷子层
探索二维(2D)铁磁体中的可控磁各向异性能(MAE)是实现具有强大存储稳定性和低功耗的新兴磁隧道结(MTJ)的关键一步。除了过渡电荷掺杂方法外,我们还提出了将二维铁磁体 1T-CrTe2 与电介质基底堆叠在一起的方法,不仅可以实现高达 5.24×1014 cm-2 的高界面电荷转移,还可以通过界面工程有效地改变磁性行为。通过第一性原理计算,我们发现 1T-CrTe2/Ca2N(Y2C) 异质结构在自旋重新定向后,MAE 显著降低。值得注意的是,内部电荷转移、外部应变和电荷掺杂的协同效应对双电层结构的磁性行为产生了重大影响,使得它们的 MAE 能够以不同的依赖关系得到有效调节。我们阐明了其基本机制是位于界面上的 Te 原子上的自旋极化 px 和 py 态的协同效应引起的改变,这反过来又改变了竞争性自旋轨道耦合 (SOC) 对 MAE 的贡献。这些发现为实现二维铁磁体中的可控 MAE 提供了一条切实可行的途径,并使所提出的异质结构有望成为新兴自旋电子器件的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Microstructure and deformation behavior of medium strength and high ductile VW93A Mg alloy profile prepared by high-efficiency extrusion at a higher process temperature Ultrathin CuZnCr-LDH nanosheets for photo-Fenton synergistic degradation of ciprofloxacin and methylene blue Unveiling reaction mechanisms of non-aqueous aprotic Zn-ion batteries – Zn/LiFePO4 system High temperature mechanical properties of wire-arc directed energy deposited Al-Ce-Mg alloy “Enhancing energy storage with binder-free nickel oxide cathodes in flexible hybrid asymmetric solid-state supercapacitors”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1