{"title":"Wee1 inhibitor optimization through deep-learning-driven decision making","authors":"","doi":"10.1016/j.ejmech.2024.116912","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, which involves activity interpretation, scaffold-based molecular generation, and activity prediction. Starting from our in-house Wee1 inhibitor <strong>GLX0198</strong> (IC<sub>50</sub> = 157.9 nM), we obtained three optimized compounds (IC<sub>50</sub> = 13.5 nM, 33.7 nM, and 47.1 nM) out of five picked molecules. Further minor modifications on these compounds led to the identification of potent Wee1 inhibitors with desirable inhibitory effects on multiple cancer cell lines. Notably, the best compound <strong>13</strong> exhibited superior cancer cell inhibition, with IC<sub>50</sub> values below 100 nM in all tested cancer cells. These results suggest that deep learning can greatly facilitate decision-making at the stage of molecular optimization.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424007931","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, which involves activity interpretation, scaffold-based molecular generation, and activity prediction. Starting from our in-house Wee1 inhibitor GLX0198 (IC50 = 157.9 nM), we obtained three optimized compounds (IC50 = 13.5 nM, 33.7 nM, and 47.1 nM) out of five picked molecules. Further minor modifications on these compounds led to the identification of potent Wee1 inhibitors with desirable inhibitory effects on multiple cancer cell lines. Notably, the best compound 13 exhibited superior cancer cell inhibition, with IC50 values below 100 nM in all tested cancer cells. These results suggest that deep learning can greatly facilitate decision-making at the stage of molecular optimization.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.