Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-11 Epub Date: 2024-10-04 DOI:10.1021/acsbiomaterials.4c01067
Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu
{"title":"Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.","authors":"Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu","doi":"10.1021/acsbiomaterials.4c01067","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu<sup>3+</sup> released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7086-7099"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu3+ released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺铕三维多孔磷酸钙支架作为促进骨组织全面再生的策略:体外和体内。
为了应对临床医生治疗各种因素造成的骨缺损所面临的挑战,人们研究了各种骨修复材料,但由于支架仅作用于骨组织再生的单一阶段,骨愈合的效率仍有待提高。我们研究了一种新型三维支架支持骨组织再生不同阶段(包括初始炎症、增殖和重塑)的潜力。将 Eu(0、0.5、2、3.5、5 和 6.5%)添加到聚磷酸钙中,获得了具有理想机械强度和孔径的多孔网络掺杂 Eu 聚磷酸钙(EuCPP)三维支架。体外和体内实验均证明,5% EuCPP支架释放的Eu3+能显著促进骨髓基质细胞的迁移和增殖,有效促进血管生成;5% EuCPP能显著上调MC3T3-E1中OPG/RANKL的比例,促进MC3T3-E1分泌成骨相关生长因子(ALP和OPN),表明该支架具有抑制骨吸收和促进骨形成的潜力。总之,5% EuCPP 具有促进血管生成、抗炎、促进骨生成和抑制骨吸收的生物学特性,可在整个骨组织修复过程中发挥持续的积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation. α-Ketoglutaric Acid Reprograms Macrophages by Altering Energy Metabolism to Promote the Regeneration of Small-Diameter Vascular Grafts. Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1