Self-Resistance Gene-Guided Discovery of the Molecular Basis for Biosynthesis of the Fatty Acid Synthase Inhibitor Cerulenin.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-04 DOI:10.1002/anie.202414941
Zhuo Shang, Amr A Arishi, Changzheng Wu, Fangzheng Lao, Cameron L M Gilchrist, Stephen A Moggach, Ernest Lacey, Andrew M Piggott, Yit-Heng Chooi
{"title":"Self-Resistance Gene-Guided Discovery of the Molecular Basis for Biosynthesis of the Fatty Acid Synthase Inhibitor Cerulenin.","authors":"Zhuo Shang, Amr A Arishi, Changzheng Wu, Fangzheng Lao, Cameron L M Gilchrist, Stephen A Moggach, Ernest Lacey, Andrew M Piggott, Yit-Heng Chooi","doi":"10.1002/anie.202414941","DOIUrl":null,"url":null,"abstract":"<p><p>Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C12 polyketide precursor with both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C12 polyketide precursor with both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自我抗性基因引导发现脂肪酸合成酶抑制剂 Cerulenin 生物合成的分子基础。
Cerulenin (1) 是第一个被报道的天然脂肪酸合成酶抑制剂,因其具有抗真菌、抗癌和抗肥胖的特性而被广泛研究。然而,六十年来,其生物合成的分子基础一直是个谜。在这里,我们利用自我抗性基因挖掘方法从两个沙雷氏菌种中鉴定出了负责 1 号生物合成的多酮生物合成基因簇(cer),并通过在黑曲霉宿主中异源重组 cer 簇进行了验证。通过表达不同组合的 cer 基因,我们发现了关键的途径中间体、来自 PKS 编码多烯酸的电环化产物以及 13 种新的 1 类似物。这使我们能够建立起 1 的生物合成途径,该途径以具有 E 和 Z 双键的 C12 多酮前体为起点,涉及一系列复杂的环氧化反应、双键转移、E/Z 异构化和环氧化物还原。通过体外实验,我们进一步验证了酰胺基转移酶 CerD 在酰胺化过程中的作用,以及氧化酶 CerF 和还原酶 CerE 在最后的双电子氧化和烯酮还原步骤中的作用。这些发现拓展了我们对高还原性 PKS 途径中复杂定制修饰的理解,并为神经鞘氨醇类似物的工程生物合成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Front Cover: A Cytochrome P450 TxtE Model System with Mechanistic and Theoretical Evidence for a Heme Peroxynitrite Active Species Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials Autocatalysis-Integrated Bioorthogonal (Poly)Catalyst-Linked Immunosorbent Assay for Living Cell Membrane Antigens. Catalyzing PET-RAFT Polymerizations Using Inherently Photoactive Zinc Myoglobin. Chiral Metal Self-assemblies of Zirconium-Tetrahedra and Their Second Harmonic Generation Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1