Can-Jerome Spyra, David Hiller, Kim A Eisenlohr, Sebastian Dechert, Serhiy Demeshko, Disha Bhattacharya, Jana Lücken, Max C Holthausen, Franc Meyer
{"title":"Structural Snapshots, Trajectory and Thermodynamics of the Reversible μ-1,2-Peroxo/μ-1,1-Hydroperoxo Dicopper(II) Interconversion.","authors":"Can-Jerome Spyra, David Hiller, Kim A Eisenlohr, Sebastian Dechert, Serhiy Demeshko, Disha Bhattacharya, Jana Lücken, Max C Holthausen, Franc Meyer","doi":"10.1002/anie.202416022","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen bonds involving the oxygen atoms of intermediates that result from copper-mediated O<sub>2</sub> activation play a key role for controlling the reactivity of Cu<sub>x</sub>/O<sub>2</sub> active sites in metalloenzymes and synthetic model complexes. However, structural insight into H-bonding in such transient species as well as thermodynamic information about proton transfer to or from the O<sub>2</sub>-derived ligands is scarce. Here we present a detailed study of the reversible interconversion of a μ<sub>1,2</sub>-peroxodicopper(II) complex ([1]<sup>+</sup>) and its μ<sub>1,1</sub>-hydroperoxo congener ([2]<sup>+</sup>) via (de)protonation, including the isolation and structural characterization of several H-bond donor (HBD) adducts of [1]<sup>+</sup> and the determination of binding constants. For one of these adducts a temperature-dependent μ<sub>1,2</sub>-peroxo/μ<sub>1,1</sub>-hydroperoxo equilibrium associated with reversible H<sup>+</sup>-translocation is observed, its thermodynamics investigated experimentally and computationally, and effects of H-bonding on spectroscopic parameters of the Cu<sup>II</sup> <sub>2</sub>(μ<sub>1,2</sub>-O<sub>2</sub>) species are revealed. DFT calculations allowed to fully map and correlate the trajectories of H<sup>+</sup>-transfer and μ<sub>1,2</sub>-peroxo→μ<sub>1,1</sub>-peroxo rearrangement. These findings enhance our understanding of two key intermediates in bioinspired Cu<sub>2</sub>/O<sub>2</sub> chemistry.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202416022"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen bonds involving the oxygen atoms of intermediates that result from copper-mediated O2 activation play a key role for controlling the reactivity of Cux/O2 active sites in metalloenzymes and synthetic model complexes. However, structural insight into H-bonding in such transient species as well as thermodynamic information about proton transfer to or from the O2-derived ligands is scarce. Here we present a detailed study of the reversible interconversion of a μ1,2-peroxodicopper(II) complex ([1]+) and its μ1,1-hydroperoxo congener ([2]+) via (de)protonation, including the isolation and structural characterization of several H-bond donor (HBD) adducts of [1]+ and the determination of binding constants. For one of these adducts a temperature-dependent μ1,2-peroxo/μ1,1-hydroperoxo equilibrium associated with reversible H+-translocation is observed, its thermodynamics investigated experimentally and computationally, and effects of H-bonding on spectroscopic parameters of the CuII2(μ1,2-O2) species are revealed. DFT calculations allowed to fully map and correlate the trajectories of H+-transfer and μ1,2-peroxo→μ1,1-peroxo rearrangement. These findings enhance our understanding of two key intermediates in bioinspired Cu2/O2 chemistry.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.