Tiffany A Kosch, Andrew J Crawford, Rachel Lockridge Mueller, Katharina C Wollenberg Valero, Megan L Power, Ariel Rodríguez, Lauren A O'Connell, Neil D Young, Lee F Skerratt
{"title":"Comparative analysis of amphibian genomes: An emerging resource for basic and applied research.","authors":"Tiffany A Kosch, Andrew J Crawford, Rachel Lockridge Mueller, Katharina C Wollenberg Valero, Megan L Power, Ariel Rodríguez, Lauren A O'Connell, Neil D Young, Lee F Skerratt","doi":"10.1111/1755-0998.14025","DOIUrl":null,"url":null,"abstract":"<p><p>Amphibians are the most threatened group of vertebrates and are in dire need of conservation intervention to ensure their continued survival. They exhibit unique features including a high diversity of reproductive strategies, permeable and specialized skin capable of producing toxins and antimicrobial compounds, multiple genetic mechanisms of sex determination and in some lineages, the ability to regenerate limbs and organs. Although genomic approaches would shed light on these unique traits and aid conservation, sequencing and assembly of amphibian genomes has lagged behind other taxa due to their comparatively large genome sizes. Fortunately, the development of long-read sequencing technologies and initiatives has led to a recent burst of new amphibian genome assemblies. Although growing, the field of amphibian genomics suffers from the lack of annotation resources, tools for working with challenging genomes and lack of high-quality assemblies in multiple clades of amphibians. Here, we analyse 51 publicly available amphibian genomes to evaluate their usefulness for functional genomics research. We report considerable variation in genome assembly quality and completeness and report some of the highest transposable element and repeat contents of any vertebrate. Additionally, we detected an association between transposable element content and climatic variables. Our analysis provides evidence of conserved genome synteny despite the long divergence times of this group, but we also highlight inconsistencies in chromosome naming and orientation across genome assemblies. We discuss sequencing gaps in the phylogeny and suggest key targets for future sequencing endeavours. Finally, we propose increased investment in amphibian genomics research to promote their conservation.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14025"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amphibians are the most threatened group of vertebrates and are in dire need of conservation intervention to ensure their continued survival. They exhibit unique features including a high diversity of reproductive strategies, permeable and specialized skin capable of producing toxins and antimicrobial compounds, multiple genetic mechanisms of sex determination and in some lineages, the ability to regenerate limbs and organs. Although genomic approaches would shed light on these unique traits and aid conservation, sequencing and assembly of amphibian genomes has lagged behind other taxa due to their comparatively large genome sizes. Fortunately, the development of long-read sequencing technologies and initiatives has led to a recent burst of new amphibian genome assemblies. Although growing, the field of amphibian genomics suffers from the lack of annotation resources, tools for working with challenging genomes and lack of high-quality assemblies in multiple clades of amphibians. Here, we analyse 51 publicly available amphibian genomes to evaluate their usefulness for functional genomics research. We report considerable variation in genome assembly quality and completeness and report some of the highest transposable element and repeat contents of any vertebrate. Additionally, we detected an association between transposable element content and climatic variables. Our analysis provides evidence of conserved genome synteny despite the long divergence times of this group, but we also highlight inconsistencies in chromosome naming and orientation across genome assemblies. We discuss sequencing gaps in the phylogeny and suggest key targets for future sequencing endeavours. Finally, we propose increased investment in amphibian genomics research to promote their conservation.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.