Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium–oxygen batteries

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-28 DOI:10.1016/j.jcis.2024.09.226
Xuecheng Cao , Minghui Cui , Kaiqi Fang , Liting Yan , Hongyu Gong , Yu Zhang , Xiangjun Zheng , Ruizhi Yang
{"title":"Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium–oxygen batteries","authors":"Xuecheng Cao ,&nbsp;Minghui Cui ,&nbsp;Kaiqi Fang ,&nbsp;Liting Yan ,&nbsp;Hongyu Gong ,&nbsp;Yu Zhang ,&nbsp;Xiangjun Zheng ,&nbsp;Ruizhi Yang","doi":"10.1016/j.jcis.2024.09.226","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS<sub>2</sub>) catalyst (designated as Ru/O-MoS<sub>2</sub>) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS<sub>2</sub> substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS<sub>2</sub> catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g<sup>−1</sup>), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 ","pages":"Pages 234-242"},"PeriodicalIF":9.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724022914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS2) catalyst (designated as Ru/O-MoS2) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS2 substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS2 catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g−1), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定在具有强界面耦合的氧改性二硫化钼上的钌原子作为锂-氧电池的高效稳定催化剂。
可充电非水锂氧电池(LOB)因其理论能量密度高而日益受到关注。然而,其缓慢的阴极动力学阻碍了电池反应的效率。纳米级催化剂可有效提高电催化活性和原子利用效率。然而,在连续放电/充电循环过程中,纳米级催化剂(如团簇和单原子)的团聚会导致电化学性能下降和循环稳定性变差。在此,我们采用简便的浸渍和煅烧方法,在掺杂 O 的二硫化钼(O-MoS2)催化剂(命名为 Ru/O-MoS2)上锚定了钌(Ru)原子位点。Ru 原子与 O-MoS2 基质之间的强 Ru-O 耦合优化了局部电子结构,从而改善了电化学性能并增强了抗奥斯特瓦尔德熟化的能力。Ru/O-MoS2 催化剂用作 LOB 的阴极催化剂时,具有较高的可逆比容量(18700.5 (±59.8) mAh g-1)、良好的速率能力和更强的长期稳定性(115 个循环,1200 小时)。这项研究鼓励采用简便、高效的策略来开发有效、稳定的电催化剂,以应用于 LOB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1