Hyperspectral retinal imaging in Alzheimer's disease and age-related macular degeneration: a review.

IF 6.2 2区 医学 Q1 NEUROSCIENCES Acta Neuropathologica Communications Pub Date : 2024-10-03 DOI:10.1186/s40478-024-01868-y
Xiaoxi Du, Jongchan Park, Ruixuan Zhao, R Theodore Smith, Yosef Koronyo, Maya Koronyo-Hamaoui, Liang Gao
{"title":"Hyperspectral retinal imaging in Alzheimer's disease and age-related macular degeneration: a review.","authors":"Xiaoxi Du, Jongchan Park, Ruixuan Zhao, R Theodore Smith, Yosef Koronyo, Maya Koronyo-Hamaoui, Liang Gao","doi":"10.1186/s40478-024-01868-y","DOIUrl":null,"url":null,"abstract":"<p><p>While Alzheimer's disease and other neurodegenerative diseases have traditionally been viewed as brain disorders, there is growing evidence indicating their manifestation in the eyes as well. The retina, being a developmental extension of the brain, represents the only part of the central nervous system that can be noninvasively imaged at a high spatial resolution. The discovery of the specific pathological hallmarks of Alzheimer's disease in the retina of patients holds great promise for disease diagnosis and monitoring, particularly in the early stages where disease progression can potentially be slowed. Among various retinal imaging methods, hyperspectral imaging has garnered significant attention in this field. It offers a label-free approach to detect disease biomarkers, making it especially valuable for large-scale population screening efforts. In this review, we discuss recent advances in the field and outline the current bottlenecks and enabling technologies that could propel this field toward clinical translation.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"157"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01868-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

While Alzheimer's disease and other neurodegenerative diseases have traditionally been viewed as brain disorders, there is growing evidence indicating their manifestation in the eyes as well. The retina, being a developmental extension of the brain, represents the only part of the central nervous system that can be noninvasively imaged at a high spatial resolution. The discovery of the specific pathological hallmarks of Alzheimer's disease in the retina of patients holds great promise for disease diagnosis and monitoring, particularly in the early stages where disease progression can potentially be slowed. Among various retinal imaging methods, hyperspectral imaging has garnered significant attention in this field. It offers a label-free approach to detect disease biomarkers, making it especially valuable for large-scale population screening efforts. In this review, we discuss recent advances in the field and outline the current bottlenecks and enabling technologies that could propel this field toward clinical translation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿尔茨海默病和老年黄斑变性中的高光谱视网膜成像:综述。
虽然阿尔茨海默病和其他神经退行性疾病传统上被视为脑部疾病,但越来越多的证据表明,它们在眼睛中也有表现。视网膜是大脑发育的延伸,是中枢神经系统中唯一能以高空间分辨率进行无创成像的部分。在患者视网膜中发现阿尔茨海默病的特定病理特征,为疾病诊断和监测带来了巨大希望,尤其是在有可能减缓疾病进展的早期阶段。在各种视网膜成像方法中,高光谱成像在这一领域备受关注。它提供了一种检测疾病生物标志物的无标记方法,使其在大规模人群筛查工作中尤为重要。在这篇综述中,我们将讨论该领域的最新进展,并概述当前的瓶颈和可推动该领域向临床转化的使能技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
期刊最新文献
Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5. BCKDK loss impairs mitochondrial Complex I activity and drives alpha-synuclein aggregation in models of Parkinson's disease. CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS. Selective retinoid X receptor agonism promotes functional recovery and myelin repair in experimental autoimmune encephalomyelitis. Germline loss-of-function variant in the E3 ubiquitin ligase TRAF2 in a young adult patient with medulloblastoma: a case report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1