Non-rodent Models of Atherosclerosis: Repurposing of Existing Drugs and Search for Novel Treatment Strategies.

IF 2.4 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Current Cardiology Reviews Pub Date : 2024-10-03 DOI:10.2174/011573403X316529240919103119
Siarhei A Dabravolski, Victoria A Khotina, Mikhail A Popov, Victor Y Glanz, Vasily N Sukhorukov, Alexander N Orekhov
{"title":"Non-rodent Models of Atherosclerosis: Repurposing of Existing Drugs and Search for Novel Treatment Strategies.","authors":"Siarhei A Dabravolski, Victoria A Khotina, Mikhail A Popov, Victor Y Glanz, Vasily N Sukhorukov, Alexander N Orekhov","doi":"10.2174/011573403X316529240919103119","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis and associated cardiovascular diseases are the leading causes of illness and mortality worldwide. The development of atherosclerosis is a complex process involving oxidative stress, surplus lipid deposition and retention, endothelial dysfunction, and chronic inflammation. Developing novel anti-atherogenic and repurposing existing drugs requires the use of suitable animal models to characterise the fundamental mechanisms underlying atherosclerosis initiation and progression and to evaluate potential therapeutic effects. Commonly used rodent models, however, are not always appropriate, and other models may be required to translate these discoveries into valuable preventive and treatment agents for human applications. Recent advances in gene-editing tools for large animals have allowed the creation of animals that develop atherosclerosis faster and more similarly to humans in terms of lesion localisation and histopathology. In this review, we discuss the major advantages and drawbacks of the main non-rodent animal models of atherosclerosis, particularly rabbits, pigs, zebrafish, and non-human primates. Moreover, we review the application of recently invented novel therapeutic methods and agents, and repurposed existing drugs (such as antidiabetic and anticancer) for atherosclerosis treatment, the efficacy of which is verified on non-rodent animal models of atherosclerosis. In total, the proper selection of a suitable animal model of atherosclerosis facilitates reproducible and rigorous translational research in repurposing of existing drugs, discovering new therapeutic strategies, and validating novel anti-atherosclerotic drugs.</p>","PeriodicalId":10832,"journal":{"name":"Current Cardiology Reviews","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011573403X316529240919103119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis and associated cardiovascular diseases are the leading causes of illness and mortality worldwide. The development of atherosclerosis is a complex process involving oxidative stress, surplus lipid deposition and retention, endothelial dysfunction, and chronic inflammation. Developing novel anti-atherogenic and repurposing existing drugs requires the use of suitable animal models to characterise the fundamental mechanisms underlying atherosclerosis initiation and progression and to evaluate potential therapeutic effects. Commonly used rodent models, however, are not always appropriate, and other models may be required to translate these discoveries into valuable preventive and treatment agents for human applications. Recent advances in gene-editing tools for large animals have allowed the creation of animals that develop atherosclerosis faster and more similarly to humans in terms of lesion localisation and histopathology. In this review, we discuss the major advantages and drawbacks of the main non-rodent animal models of atherosclerosis, particularly rabbits, pigs, zebrafish, and non-human primates. Moreover, we review the application of recently invented novel therapeutic methods and agents, and repurposed existing drugs (such as antidiabetic and anticancer) for atherosclerosis treatment, the efficacy of which is verified on non-rodent animal models of atherosclerosis. In total, the proper selection of a suitable animal model of atherosclerosis facilitates reproducible and rigorous translational research in repurposing of existing drugs, discovering new therapeutic strategies, and validating novel anti-atherosclerotic drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动脉粥样硬化的非啮齿动物模型:现有药物的再利用和新型治疗策略的探索。
动脉粥样硬化和相关的心血管疾病是全球疾病和死亡的主要原因。动脉粥样硬化的发展是一个复杂的过程,涉及氧化应激、过剩脂质沉积和滞留、内皮功能障碍和慢性炎症。开发新的抗动脉粥样硬化药物和对现有药物进行再利用需要使用合适的动物模型来描述动脉粥样硬化发生和发展的基本机制,并评估潜在的治疗效果。然而,常用的啮齿类动物模型并不总是合适的,可能需要其他模型才能将这些发现转化为有价值的预防和治疗药物供人类应用。最近在大型动物基因编辑工具方面取得的进展使我们能够制造出在病变定位和组织病理学方面发展得更快、与人类更相似的动脉粥样硬化动物。在这篇综述中,我们将讨论主要非啮齿类动物动脉粥样硬化动物模型的主要优点和缺点,特别是兔子、猪、斑马鱼和非人灵长类动物。此外,我们还回顾了最近发明的新型治疗方法和药物,以及现有药物(如抗糖尿病和抗癌药)在动脉粥样硬化治疗中的再利用,其疗效已在非啮齿动物动脉粥样硬化动物模型上得到验证。总之,正确选择合适的动脉粥样硬化动物模型有助于在现有药物的再利用、发现新的治疗策略和验证新型抗动脉粥样硬化药物方面开展可重复的、严谨的转化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Cardiology Reviews
Current Cardiology Reviews CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.70
自引率
10.50%
发文量
117
期刊介绍: Current Cardiology Reviews publishes frontier reviews of high quality on all the latest advances on the practical and clinical approach to the diagnosis and treatment of cardiovascular disease. All relevant areas are covered by the journal including arrhythmia, congestive heart failure, cardiomyopathy, congenital heart disease, drugs, methodology, pacing, and preventive cardiology. The journal is essential reading for all researchers and clinicians in cardiology.
期刊最新文献
Heart Rate Variability and Heart Failure with Reduced Ejection Fraction: A Systematic Review of Literature. Comprehensive Review of Coronary Artery Anatomy Relevant to Cardiac Surgery. Unveiling the Complexities: Exploring Mechanisms of Anthracycline-Induced Cardiotoxicity. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Insulin Resistance, Hyperinsulinemia and Atherosclerosis: Insights into Pathophysiological Aspects and Future Therapeutic Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1