Portable noninvasive technologies for early breast cancer detection: A systematic review.

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-01 Epub Date: 2024-10-02 DOI:10.1016/j.compbiomed.2024.109219
Shadrack O Aboagye, John A Hunt, Graham Ball, Yang Wei
{"title":"Portable noninvasive technologies for early breast cancer detection: A systematic review.","authors":"Shadrack O Aboagye, John A Hunt, Graham Ball, Yang Wei","doi":"10.1016/j.compbiomed.2024.109219","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a leading cause of cancer mortality worldwide, with early detection crucial for improving outcomes. This systematic review evaluates recent advances in portable non-invasive technologies for early breast cancer detection, assessing their methods, performance, and potential for clinical implementation. A comprehensive literature search was conducted across major databases for relevant studies published between 2015 and 2024. Data on technology types, detection methods, and diagnostic performance were extracted and synthesized from 41 included studies. The review examined microwave imaging, electrical impedance tomography (EIT), thermography, bioimpedance spectroscopy (BIS), and pressure sensing technologies. Microwave imaging and EIT showed the most promise, with some studies reporting sensitivities and specificities over 90 %. However, most technologies are still in early stages of development with limited large-scale clinical validation. These innovations could complement existing gold standards, potentially improving screening rates and outcomes, especially in underserved populations, whiles decreasing screening waiting times in developed countries. Further research is therefore needed to validate their clinical efficacy, address implementation challenges, and assess their impact on patient outcomes before widespread adoption can be recommended.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"109219"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109219","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer remains a leading cause of cancer mortality worldwide, with early detection crucial for improving outcomes. This systematic review evaluates recent advances in portable non-invasive technologies for early breast cancer detection, assessing their methods, performance, and potential for clinical implementation. A comprehensive literature search was conducted across major databases for relevant studies published between 2015 and 2024. Data on technology types, detection methods, and diagnostic performance were extracted and synthesized from 41 included studies. The review examined microwave imaging, electrical impedance tomography (EIT), thermography, bioimpedance spectroscopy (BIS), and pressure sensing technologies. Microwave imaging and EIT showed the most promise, with some studies reporting sensitivities and specificities over 90 %. However, most technologies are still in early stages of development with limited large-scale clinical validation. These innovations could complement existing gold standards, potentially improving screening rates and outcomes, especially in underserved populations, whiles decreasing screening waiting times in developed countries. Further research is therefore needed to validate their clinical efficacy, address implementation challenges, and assess their impact on patient outcomes before widespread adoption can be recommended.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于早期乳腺癌检测的便携式无创技术:系统综述。
乳腺癌仍然是全球癌症死亡的主要原因,早期检测对改善预后至关重要。本系统综述评估了用于早期乳腺癌检测的便携式无创技术的最新进展,评估了这些技术的方法、性能和临床应用潜力。我们在主要数据库中对 2015 年至 2024 年间发表的相关研究进行了全面的文献检索。从纳入的 41 项研究中提取并综合了有关技术类型、检测方法和诊断性能的数据。综述研究了微波成像、电阻抗断层扫描(EIT)、热成像、生物阻抗光谱(BIS)和压力传感技术。微波成像和电阻抗断层扫描最有前景,一些研究报告的灵敏度和特异性超过 90%。不过,大多数技术仍处于早期开发阶段,大规模临床验证有限。这些创新技术可以补充现有的黄金标准,有可能提高筛查率和筛查结果,尤其是在服务不足的人群中,同时缩短发达国家的筛查等待时间。因此,在建议广泛采用之前,还需要开展进一步的研究,以验证其临床疗效,解决实施方面的挑战,并评估其对患者预后的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1