Abdullah A Al-Haddad, Luttfi A Al-Haddad, Sinan A Al-Haddad, Alaa Abdulhady Jaber, Zeashan Hameed Khan, Hafiz Zia Ur Rehman
{"title":"Towards dental diagnostic systems: Synergizing wavelet transform with generative adversarial networks for enhanced image data fusion.","authors":"Abdullah A Al-Haddad, Luttfi A Al-Haddad, Sinan A Al-Haddad, Alaa Abdulhady Jaber, Zeashan Hameed Khan, Hafiz Zia Ur Rehman","doi":"10.1016/j.compbiomed.2024.109241","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of precision diagnostics in pediatric dentistry is shifting towards ensuring early detection of dental diseases, a critical factor in safeguarding the oral health of the younger population. In this study, an innovative approach is introduced, wherein Discrete Wavelet Transform (DWT) and Generative Adversarial Networks (GANs) are synergized within an Image Data Fusion (IDF) framework to enhance the accuracy of dental disease diagnosis through dental diagnostic systems. Dental panoramic radiographs from pediatric patients were utilized to demonstrate how the integration of DWT and GANs can significantly improve the informativeness of dental images. In the IDF process, the original images, GAN-augmented images, and wavelet-transformed images are combined to create a comprehensive dataset. DWT was employed for the decomposition of images into frequency components to enhance the visibility of subtle pathological features. Simultaneously, GANs were used to augment the dataset with high-quality, synthetic radiographic images indistinguishable from real ones, to provide robust data training. These integrated images are then fed into an Artificial Neural Network (ANN) for the classification of dental diseases. The utilization of the ANN in this context demonstrates the system's robustness and culminates in achieving an unprecedented accuracy rate of 0.897, 0.905 precision, recall of 0.897, and specificity of 0.968. Additionally, this study explores the feasibility of embedding the diagnostic system into dental X-ray scanners by leveraging lightweight models and cloud-based solutions to minimize resource constraints. Such integration is posited to revolutionize dental care by providing real-time, accurate disease detection capabilities, which significantly reduces diagnostical delays and enhances treatment outcomes.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"109241"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of precision diagnostics in pediatric dentistry is shifting towards ensuring early detection of dental diseases, a critical factor in safeguarding the oral health of the younger population. In this study, an innovative approach is introduced, wherein Discrete Wavelet Transform (DWT) and Generative Adversarial Networks (GANs) are synergized within an Image Data Fusion (IDF) framework to enhance the accuracy of dental disease diagnosis through dental diagnostic systems. Dental panoramic radiographs from pediatric patients were utilized to demonstrate how the integration of DWT and GANs can significantly improve the informativeness of dental images. In the IDF process, the original images, GAN-augmented images, and wavelet-transformed images are combined to create a comprehensive dataset. DWT was employed for the decomposition of images into frequency components to enhance the visibility of subtle pathological features. Simultaneously, GANs were used to augment the dataset with high-quality, synthetic radiographic images indistinguishable from real ones, to provide robust data training. These integrated images are then fed into an Artificial Neural Network (ANN) for the classification of dental diseases. The utilization of the ANN in this context demonstrates the system's robustness and culminates in achieving an unprecedented accuracy rate of 0.897, 0.905 precision, recall of 0.897, and specificity of 0.968. Additionally, this study explores the feasibility of embedding the diagnostic system into dental X-ray scanners by leveraging lightweight models and cloud-based solutions to minimize resource constraints. Such integration is posited to revolutionize dental care by providing real-time, accurate disease detection capabilities, which significantly reduces diagnostical delays and enhances treatment outcomes.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.