{"title":"Methods for multi-omic data integration in cancer research.","authors":"Enrique Hernández-Lemus, Soledad Ochoa","doi":"10.3389/fgene.2024.1425456","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-omics data integration is a term that refers to the process of combining and analyzing data from different omic experimental sources, such as genomics, transcriptomics, methylation assays, and microRNA sequencing, among others. Such data integration approaches have the potential to provide a more comprehensive functional understanding of biological systems and has numerous applications in areas such as disease diagnosis, prognosis and therapy. However, quantitative integration of multi-omic data is a complex task that requires the use of highly specialized methods and approaches. Here, we discuss a number of data integration methods that have been developed with multi-omics data in view, including statistical methods, machine learning approaches, and network-based approaches. We also discuss the challenges and limitations of such methods and provide examples of their applications in the literature. Overall, this review aims to provide an overview of the current state of the field and highlight potential directions for future research.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1425456","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-omics data integration is a term that refers to the process of combining and analyzing data from different omic experimental sources, such as genomics, transcriptomics, methylation assays, and microRNA sequencing, among others. Such data integration approaches have the potential to provide a more comprehensive functional understanding of biological systems and has numerous applications in areas such as disease diagnosis, prognosis and therapy. However, quantitative integration of multi-omic data is a complex task that requires the use of highly specialized methods and approaches. Here, we discuss a number of data integration methods that have been developed with multi-omics data in view, including statistical methods, machine learning approaches, and network-based approaches. We also discuss the challenges and limitations of such methods and provide examples of their applications in the literature. Overall, this review aims to provide an overview of the current state of the field and highlight potential directions for future research.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.