Aquaporin-1 Facilitates Macrophage M1 Polarization by Enhancing Glycolysis Through the Activation of HIF1α in Lipopolysaccharide-Induced Acute Kidney Injury.

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-10-04 DOI:10.1007/s10753-024-02154-8
Ru-Xue Diao, Wu-Yang Lv, Yu-Chen Wang, Qiu-Ling Shen, Kai-Hong Tang, Xiao-Xiao Luo, Ying-Yu Jin
{"title":"Aquaporin-1 Facilitates Macrophage M1 Polarization by Enhancing Glycolysis Through the Activation of HIF1α in Lipopolysaccharide-Induced Acute Kidney Injury.","authors":"Ru-Xue Diao, Wu-Yang Lv, Yu-Chen Wang, Qiu-Ling Shen, Kai-Hong Tang, Xiao-Xiao Luo, Ying-Yu Jin","doi":"10.1007/s10753-024-02154-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate how aquaporin 1 (AQP1) modulates hypoxia-inducible factor-1α (HIF1α) to promote glycolysis and drive the M1 polarization of macrophages. Within 12 h post-treatment with LPS to induce acute kidney injury in rats, a significant upregulation of AQP1 and HIF1α protein levels was noted in serum and kidney tissues. This elevation corresponded with a decrease in blood glucose concentrations and an enhancement of glycolytic activity relative to the control group. Furthermore, there was a pronounced reduction in the circulating levels of the anti-inflammatory cytokine IL-10, accompanied by an upregulation in the levels of the pro-inflammatory cytokines IL-6 and TNF-α. The administration of an HIF1α inhibitor reversed these effects, which did not affect the production of AQP1 protein. In cellular assays, AQP1 knockdown mitigated the increase in HIF1α expression induced by LPS. Furthermore, the suppression of HIF1α with PX-478 led to decreased expression levels of Hexokinase 2 (HK2) and Lactate Dehydrogenase A (LDHA), indicating that AQP1 regulates glycolysis through HIF1α. M1 polarization of macrophages was reduced by AQP1 knockdown and was further diminished by the addition of an HIF1α inhibitor. Inhibition of the glycolytic process not only weakened M1 polarization but also promoted M2 polarization, thereby reducing the release of inflammatory cytokines. These findings provide a novel perspective for developing therapeutic strategies that target AQP1 and HIF1α, potentially improving the treatment of sepsis-associated AKI.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02154-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate how aquaporin 1 (AQP1) modulates hypoxia-inducible factor-1α (HIF1α) to promote glycolysis and drive the M1 polarization of macrophages. Within 12 h post-treatment with LPS to induce acute kidney injury in rats, a significant upregulation of AQP1 and HIF1α protein levels was noted in serum and kidney tissues. This elevation corresponded with a decrease in blood glucose concentrations and an enhancement of glycolytic activity relative to the control group. Furthermore, there was a pronounced reduction in the circulating levels of the anti-inflammatory cytokine IL-10, accompanied by an upregulation in the levels of the pro-inflammatory cytokines IL-6 and TNF-α. The administration of an HIF1α inhibitor reversed these effects, which did not affect the production of AQP1 protein. In cellular assays, AQP1 knockdown mitigated the increase in HIF1α expression induced by LPS. Furthermore, the suppression of HIF1α with PX-478 led to decreased expression levels of Hexokinase 2 (HK2) and Lactate Dehydrogenase A (LDHA), indicating that AQP1 regulates glycolysis through HIF1α. M1 polarization of macrophages was reduced by AQP1 knockdown and was further diminished by the addition of an HIF1α inhibitor. Inhibition of the glycolytic process not only weakened M1 polarization but also promoted M2 polarization, thereby reducing the release of inflammatory cytokines. These findings provide a novel perspective for developing therapeutic strategies that target AQP1 and HIF1α, potentially improving the treatment of sepsis-associated AKI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在脂多糖诱导的急性肾损伤中,Aquaporin-1通过激活HIF1α增强糖酵解促进巨噬细胞M1极化
本研究旨在探讨水通道蛋白1(AQP1)如何调节缺氧诱导因子-1α(HIF1α)以促进糖酵解并驱动巨噬细胞的M1极化。用 LPS 诱导大鼠急性肾损伤后 12 小时内,血清和肾组织中的 AQP1 和 HIF1α 蛋白水平显著上调。与对照组相比,这种升高与血糖浓度的降低和糖酵解活性的增强相对应。此外,抗炎细胞因子 IL-10 的循环水平明显降低,同时促炎细胞因子 IL-6 和 TNF-α 的水平上调。服用 HIF1α 抑制剂可逆转这些影响,但并不影响 AQP1 蛋白的生成。在细胞实验中,敲除 AQP1 可减轻 LPS 诱导的 HIF1α 表达的增加。此外,用PX-478抑制HIF1α会导致六磷酸酶2(HK2)和乳酸脱氢酶A(LDHA)的表达水平下降,这表明AQP1通过HIF1α调节糖酵解。巨噬细胞的 M1 极化因 AQP1 基因敲除而减弱,并在加入 HIF1α 抑制剂后进一步减弱。抑制糖酵解过程不仅会削弱 M1 极化,还会促进 M2 极化,从而减少炎症细胞因子的释放。这些发现为开发针对 AQP1 和 HIF1α 的治疗策略提供了一个新的视角,有可能改善脓毒症相关性 AKI 的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1