Comparison of Nocifensive Behavior in NaV1.7–, NaV1.8–, and NaV1.9–Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents

IF 2.9 3区 医学 Q2 NEUROSCIENCES Journal of Neuroscience Research Pub Date : 2024-10-04 DOI:10.1002/jnr.25386
Toyoaki Maruta, Satoshi Kouroki, Mio Kurogi, Kotaro Hidaka, Tomohiro Koshida, Ayako Miura, Hikaru Nakagawa, Toshihiko Yanagita, Ryu Takeya, Isao Tsuneyoshi
{"title":"Comparison of Nocifensive Behavior in NaV1.7–, NaV1.8–, and NaV1.9–Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents","authors":"Toyoaki Maruta,&nbsp;Satoshi Kouroki,&nbsp;Mio Kurogi,&nbsp;Kotaro Hidaka,&nbsp;Tomohiro Koshida,&nbsp;Ayako Miura,&nbsp;Hikaru Nakagawa,&nbsp;Toshihiko Yanagita,&nbsp;Ryu Takeya,&nbsp;Isao Tsuneyoshi","doi":"10.1002/jnr.25386","DOIUrl":null,"url":null,"abstract":"<p>Voltage-gated sodium channels, including Na<sub>V</sub>1.7, Na<sub>V</sub>1.8, and Na<sub>V</sub>1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite Na<sub>V</sub>1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of Na<sub>V</sub>1.7, Na<sub>V</sub>1.8, or Na<sub>V</sub>1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, Na<sub>V</sub>1.7–iCre, Na<sub>V</sub>1.8–iCre, or Na<sub>V</sub>1.9–iCre mice expressing iCre recombinase under the control of the endogenous Na<sub>V</sub>1.7, Na<sub>V</sub>1.8, or Na<sub>V</sub>1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre–reporter Ai32 mice to obtain Na<sub>V</sub>1.7–ChR2, Na<sub>V</sub>1.8–ChR2, or Na<sub>V</sub>1.9–ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in Na<sub>V</sub>1.8–ChR2 mice. These light sensitivity differences observed across Na<sub>V</sub>1.x–ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.25386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25386","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-gated sodium channels, including NaV1.7, NaV1.8, and NaV1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite NaV1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of NaV1.7, NaV1.8, or NaV1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, NaV1.7–iCre, NaV1.8–iCre, or NaV1.9–iCre mice expressing iCre recombinase under the control of the endogenous NaV1.7, NaV1.8, or NaV1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre–reporter Ai32 mice to obtain NaV1.7–ChR2, NaV1.8–ChR2, or NaV1.9–ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in NaV1.8–ChR2 mice. These light sensitivity differences observed across NaV1.x–ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过选择性光遗传激活靶向钠通道亚型表达的传入神经,比较 NaV1.7-、NaV1.8- 和 NaV1.9-Channelrhodopsin-2 小鼠的神经紧张行为。
电压门控钠通道(包括 NaV1.7、NaV1.8 和 NaV1.9)在疼痛传递和慢性疼痛发展中发挥着重要作用。然而,这些通道的具体作用机制仍不清楚,因此需要对这些通道进行体内刺激研究。光遗传学是一种利用光靶向激活或抑制特定神经回路的新型技术,它提供了一种前景广阔的解决方案。在之前的研究中,我们利用光遗传学选择性地激发了小鼠背根神经节中表达 NaV1.7 的神经元,从而诱发了神经痛行为。在这里,我们进一步描述了激活 NaV1.7、NaV1.8 或 NaV1.9 表达神经元对神经痛行为的影响。通过 CRISPR/Cas9 介导的同源重组,我们培育出了在内源性 NaV1.7、NaV1.8 或 NaV1.9 基因启动子控制下表达 iCre 重组酶的 NaV1.7-iCre、NaV1.8-iCre 或 NaV1.9-iCre 小鼠。然后将这些小鼠与channelrhodopsin-2(ChR2)Cre-reporter Ai32小鼠杂交,得到NaV1.7-ChR2、NaV1.8-ChR2或NaV1.9-ChR2小鼠。蓝光照射会引发所有小鼠的爪退缩,NaV1.8-ChR2 小鼠的反应最强。在 NaV1.x-ChR2 小鼠中观察到的这些光敏感性差异可能取决于 ChR2 的表达,也可能反映了它们在痛觉传导作用上的固有差异。总之,我们通过光激活外周痛觉感受器建立了非侵入性疼痛模型。我们相信,利用光遗传学进行的研究将进一步阐明钠通道亚型在疼痛传导中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Research
Journal of Neuroscience Research 医学-神经科学
CiteScore
9.50
自引率
2.40%
发文量
145
审稿时长
1 months
期刊介绍: The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology. The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.
期刊最新文献
Modulation of Hypothalamic Dopamine Neuron Activity by Interaction Between Caloric State and Amphetamine in Zebrafish Larvae. Hypothalamus Connectivity in Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome The Role of Parvalbumin Interneurons in Autism Spectrum Disorder Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats Comparison of Nocifensive Behavior in NaV1.7–, NaV1.8–, and NaV1.9–Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1