Updating a diesel engine exhaust job-exposure matrix with published measurement data.

IF 1.5 4区 医学 Q4 ENVIRONMENTAL SCIENCES Journal of Occupational and Environmental Hygiene Pub Date : 2024-11-01 Epub Date: 2024-10-03 DOI:10.1080/15459624.2024.2400227
Stephanie Ziembicki, Tracy L Kirkham, Paul A Demers, Victoria H Arrandale
{"title":"Updating a diesel engine exhaust job-exposure matrix with published measurement data.","authors":"Stephanie Ziembicki, Tracy L Kirkham, Paul A Demers, Victoria H Arrandale","doi":"10.1080/15459624.2024.2400227","DOIUrl":null,"url":null,"abstract":"<p><p>A job-exposure matrix (JEM) is a tool that can estimate diesel engine exhaust (DEE) exposures. JEMs based on expert judgment or measurement data are limited by the information available at the time of development. Over time, more information about hazardous exposures is understood through additional measurements and peer-reviewed publications. This study presents a systematic approach to updating an existing DEE JEM using published data to better reflect current scientific knowledge. The literature was searched for occupational exposure studies that measured DEE as elemental carbon (EC) between January 2010 and May 2022. Four-digit North American Industry Classification System (NAICS) 2002 and National Occupational Classification-Statistics (NOC-S) 2006 codes were assigned to each identified subgroup within the studies. EC exposures were categorized as low (0-10 µg/m<sup>3</sup>), moderate (10-20 µg/m<sup>3</sup>), or high (>20 µg/m<sup>3</sup>). Weighted arithmetic means were calculated for each industry-occupation intersection (IOI) identified in the literature. These means were used to adjust, or retain, the existing exposure level within the JEM cells using a decision tree based on the number of studies, workplace locations, and pooled sample size of the weighted mean. Concordance was measured between the updated JEM (Diesel Exhaust in Canada JEM (DEC-JEM)), the previous (existing) JEM, and the Canadian Job-Exposure Matrix (CANJEM). Thirty-seven studies were identified from the published literature reporting on 53 unique IOIs (20 NAICS and 34 NOC-S codes), including occupations in the mining, construction, and transportation industries. Exposure levels for 66% of identified IOIs increased, most in construction and mining. After the decision tree's results were expanded to the full DEC-JEM, the exposure level of 486 IOIs (12.5% of DEC-JEM) and 286,710 workers (15.8% of DEE-exposed workers) increased. There was a significant correlation between qualitative exposure levels in the updated DEC-JEM and CANJEM (Kendall's τ = 0.364, <i>p</i> < 0.001). This study describes a systematic approach to updating an existing JEM to incorporate new scientific knowledge. The updated DEC-JEM better reflects existing exposure knowledge in several industries, particularly construction. Future analyses include investigating its use as an exposure assessment tool in disease surveillance.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"795-804"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2400227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A job-exposure matrix (JEM) is a tool that can estimate diesel engine exhaust (DEE) exposures. JEMs based on expert judgment or measurement data are limited by the information available at the time of development. Over time, more information about hazardous exposures is understood through additional measurements and peer-reviewed publications. This study presents a systematic approach to updating an existing DEE JEM using published data to better reflect current scientific knowledge. The literature was searched for occupational exposure studies that measured DEE as elemental carbon (EC) between January 2010 and May 2022. Four-digit North American Industry Classification System (NAICS) 2002 and National Occupational Classification-Statistics (NOC-S) 2006 codes were assigned to each identified subgroup within the studies. EC exposures were categorized as low (0-10 µg/m3), moderate (10-20 µg/m3), or high (>20 µg/m3). Weighted arithmetic means were calculated for each industry-occupation intersection (IOI) identified in the literature. These means were used to adjust, or retain, the existing exposure level within the JEM cells using a decision tree based on the number of studies, workplace locations, and pooled sample size of the weighted mean. Concordance was measured between the updated JEM (Diesel Exhaust in Canada JEM (DEC-JEM)), the previous (existing) JEM, and the Canadian Job-Exposure Matrix (CANJEM). Thirty-seven studies were identified from the published literature reporting on 53 unique IOIs (20 NAICS and 34 NOC-S codes), including occupations in the mining, construction, and transportation industries. Exposure levels for 66% of identified IOIs increased, most in construction and mining. After the decision tree's results were expanded to the full DEC-JEM, the exposure level of 486 IOIs (12.5% of DEC-JEM) and 286,710 workers (15.8% of DEE-exposed workers) increased. There was a significant correlation between qualitative exposure levels in the updated DEC-JEM and CANJEM (Kendall's τ = 0.364, p < 0.001). This study describes a systematic approach to updating an existing JEM to incorporate new scientific knowledge. The updated DEC-JEM better reflects existing exposure knowledge in several industries, particularly construction. Future analyses include investigating its use as an exposure assessment tool in disease surveillance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用已公布的测量数据更新柴油发动机废气工作暴露矩阵。
工作暴露矩阵(JEM)是一种可以估算柴油发动机废气(DEE)暴露量的工具。基于专家判断或测量数据的 JEM 受限于开发时的可用信息。随着时间的推移,通过更多的测量数据和同行评审的出版物,人们会了解到更多有关危险暴露的信息。本研究介绍了一种利用已发表数据更新现有 DEE JEM 的系统方法,以更好地反映当前的科学知识。我们检索了 2010 年 1 月至 2022 年 5 月期间以碳元素 (EC) 为单位测量 DEE 的职业接触研究文献。为研究中的每个已确定的亚组分配了 2002 年北美行业分类系统(NAICS)和 2006 年国家职业分类统计(NOC-S)的四位数代码。暴露于导电率的程度分为低(0-10 µg/m3)、中(10-20 µg/m3)或高(>20 µg/m3)。对文献中确定的每个行业-职业交叉点(IOI)计算加权算术平均值。根据研究数量、工作场所地点和加权平均值的集合样本量,使用决策树调整或保留联合环境监测单元内的现有暴露水平。对更新后的 JEM(加拿大柴油机废气 JEM (DEC-JEM))、以前(现有)的 JEM 和加拿大工作暴露矩阵 (CANJEM) 之间的一致性进行了测量。从已发表的文献中确定了 37 项研究,报告了 53 个独特的 IOI(20 个 NAICS 和 34 个 NOC-S 代码),包括采矿、建筑和运输行业的职业。在已确定的 IOI 中,66% 的暴露水平有所上升,其中以建筑业和采矿业居多。将决策树的结果扩展到整个 DEC-JEM 后,486 个 IOI(占 DEC-JEM 的 12.5%)和 286,710 名工人(占暴露于 DEE 的工人的 15.8%)的暴露水平上升。更新后的 DEC-JEM 和 CANJEM 中的定性暴露水平之间存在明显的相关性(Kendall's τ = 0.364,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Occupational and Environmental Hygiene
Journal of Occupational and Environmental Hygiene 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
10.00%
发文量
81
审稿时长
12-24 weeks
期刊介绍: The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality. The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.
期刊最新文献
Application of the Tier 3 NIOSH occupational exposure banding process for the graphene family of nanomaterials: A case study. Caution with self-reported occupational noise exposures. Lessons learned in establishing and sustaining elastomeric half mask respirator-based respiratory protection programs: An impact evaluation. Removal efficiency of antineoplastic drug cyclophosphamide by hypochlorous acid. Response to the comments from Mr. Shkembi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1