{"title":"Stigmasterol exerts antiglioma effects by regulating lipid metabolism.","authors":"Ting Wei, Ruichun Li, Shiwen Guo, Chen Liang","doi":"10.3892/mmr.2024.13351","DOIUrl":null,"url":null,"abstract":"<p><p>Stigmasterol is a sterol compound found in various traditional Chinese medicines; however, its effects on glioma remain unclear. The present study aimed to investigate the effects of stigmasterol on the biological behaviors of glioblastoma (GBM) cells and to explore the underlying mechanisms. <i>In vitro</i> experiments assessed its effects on GBM cell proliferation, apoptosis, cell cycle progression, invasion, migration and vasculogenic mimicry (VM). The potential targets for stigmasterol in treating GBM were identified using databases and Venn diagram analysis, followed by enrichment analysis using R language. A prognostic model related to the target genes of stigmasterol was developed through univariate Cox regression and least absolute shrinkage and selection operator analyses. Stigmasterol was found to suppress the proliferation of GBM cells in a dose‑ and time‑dependent manner, to induce apoptosis, and to inhibit invasion, migration and VM formation. Additionally, 31 potential targets of stigmasterol were identified, linked to lipid metabolism and the G protein‑coupled receptor signaling pathway. Lipid metabolism assays revealed that stigmasterol significantly reduced free fatty acids and total cholesterol levels. Furthermore, two prognosis‑related target genes, fatty acid binding protein 5 and α‑1B adrenergic receptor, were selected, and the prognostic model effectively predicted GBM outcomes. Moreover, molecular docking revealed strong binding affinities between stigmasterol and the target proteins. Overall, these findings suggested that stigmasterol may exert anti‑glioma effects, which could be potentially mediated through the regulation of lipid metabolism.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13351","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stigmasterol is a sterol compound found in various traditional Chinese medicines; however, its effects on glioma remain unclear. The present study aimed to investigate the effects of stigmasterol on the biological behaviors of glioblastoma (GBM) cells and to explore the underlying mechanisms. In vitro experiments assessed its effects on GBM cell proliferation, apoptosis, cell cycle progression, invasion, migration and vasculogenic mimicry (VM). The potential targets for stigmasterol in treating GBM were identified using databases and Venn diagram analysis, followed by enrichment analysis using R language. A prognostic model related to the target genes of stigmasterol was developed through univariate Cox regression and least absolute shrinkage and selection operator analyses. Stigmasterol was found to suppress the proliferation of GBM cells in a dose‑ and time‑dependent manner, to induce apoptosis, and to inhibit invasion, migration and VM formation. Additionally, 31 potential targets of stigmasterol were identified, linked to lipid metabolism and the G protein‑coupled receptor signaling pathway. Lipid metabolism assays revealed that stigmasterol significantly reduced free fatty acids and total cholesterol levels. Furthermore, two prognosis‑related target genes, fatty acid binding protein 5 and α‑1B adrenergic receptor, were selected, and the prognostic model effectively predicted GBM outcomes. Moreover, molecular docking revealed strong binding affinities between stigmasterol and the target proteins. Overall, these findings suggested that stigmasterol may exert anti‑glioma effects, which could be potentially mediated through the regulation of lipid metabolism.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.