A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer.

IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Mini reviews in medicinal chemistry Pub Date : 2024-10-03 DOI:10.2174/0113895575320468240912093945
Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammed Naseer, Safia Hassan, Momin Khan, Amina Zulfiqar
{"title":"A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer.","authors":"Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammed Naseer, Safia Hassan, Momin Khan, Amina Zulfiqar","doi":"10.2174/0113895575320468240912093945","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O2]. The ability to absorb light in visible and nearinfrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575320468240912093945","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O2]. The ability to absorb light in visible and nearinfrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进生物材料在癌症光动力疗法中的光药效最新趋势综述。
光动力疗法(PDT)已成为一种高效、无创的癌症治疗方法,考虑到全球与癌症相关的死亡率很高,这一点至关重要。光动力疗法的有效性主要取决于所使用的光敏剂的质量。当受到适当的光照射时,这些光敏剂会吸收能量并过渡到激发态,最终将能量转移到附近的分子并产生活性氧(ROS),包括单线态氧[1O2]。卟啉及其衍生物能够吸收可见光和近红外线波长的光,因此是一种非常有用的光敏剂。卟啉由四个亚甲基连接的四吡咯结构组成,是典型的光敏剂。卟啉类光敏剂的水溶性和生物稳定性有限,且具有非特异性肿瘤靶向特性,这阻碍了光导放疗的有效性和临床应用。因此,人们采用了多种改性和功能化技术来最大限度地提高 PDT 的效率,并开发了多维卟啉基功能材料。本综述论文研究了卟啉基功能材料的最新进展,主要集中在两个方面:一是开发了可改善水溶性和生物相容性的卟啉双亲化合物;二是设计了卟啉基聚合物,包括共价键嵌段共聚物和非共价键超分子聚合物,为 PDT 应用提供了多功能平台。卟啉基功能材料的开发将为研究人员开辟新的机遇,从而大大扩展光导透射疗法在癌症治疗中的应用。有了这些创新,卟啉将克服自身的局限性,将光导放疗推向癌症治疗的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
231
审稿时长
6 months
期刊介绍: The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines. Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold. Sulfonated Penta-Galloyl Glucose (SPGG): The Pharmacological Effects of Promiscuous Glycosaminoglycan Small Molecule Mimetic. Comprehensive Insight into Green Synthesis Approaches, Structural Activity Relationship, and Therapeutic Potential of Pyrazolic Chalcone Derivative. Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ From That of Actual Human Tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1