Periderm fate and independence of tooth formation are conserved across osteichthyans.

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Evodevo Pub Date : 2024-10-03 DOI:10.1186/s13227-024-00232-4
A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny
{"title":"Periderm fate and independence of tooth formation are conserved across osteichthyans.","authors":"A Huysseune, A Horackova, T Suchanek, D Larionova, R Cerny","doi":"10.1186/s13227-024-00232-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that periderm (the outer ectodermal layer) in zebrafish partially expands into the mouth and pharyngeal pouches, but does not reach the medial endoderm, where the pharyngeal teeth develop. Instead, periderm-like cells, arising independently from the outer periderm, cover prospective tooth-forming epithelia and are crucial for tooth germ initiation. Here we test the hypothesis that restricted expansion of periderm is a teleost-specific character possibly related to the derived way of early embryonic development. To this end, we performed lineage tracing of the periderm in a non-teleost actinopterygian species possessing pharyngeal teeth, the sterlet sturgeon (Acipenser ruthenus), and a sarcopterygian species lacking pharyngeal teeth, the axolotl (Ambystoma mexicanum).</p><p><strong>Results: </strong>In sturgeon, a stratified ectoderm is firmly established at the end of gastrulation, with minimally a basal ectodermal layer and a surface layer that can be homologized to a periderm. Periderm expands to a limited extent into the mouth and remains restricted to the distal parts of the pouches. It does not reach the medial pharyngeal endoderm, where pharyngeal teeth are located. Thus, periderm in sturgeon covers prospective odontogenic epithelium in the jaw region (oral teeth) but not in the pharyngeal region. In axolotl, like in sturgeon, periderm expansion in the oropharynx is restricted to the distal parts of the opening pouches. Oral teeth in axolotl develop long before mouth opening and possible expansion of the periderm into the mouth cavity.</p><p><strong>Conclusions: </strong>Restricted periderm expansion into the oropharynx appears to be an ancestral feature for osteichthyans, as it is found in sturgeon, zebrafish and axolotl. Periderm behavior does not correlate with presence or absence of oral or pharyngeal teeth, whose induction may depend on 'ectodermalized' endoderm. It is proposed that periderm assists in lumenization of the pouches to create an open gill slit. Comparison of basal and advanced actinopterygians with sarcopterygians (axolotl) shows that different trajectories of embryonic development converge on similar dynamics of the periderm: a restricted expansion into the mouth and prospective gill slits.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-024-00232-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Previous studies have reported that periderm (the outer ectodermal layer) in zebrafish partially expands into the mouth and pharyngeal pouches, but does not reach the medial endoderm, where the pharyngeal teeth develop. Instead, periderm-like cells, arising independently from the outer periderm, cover prospective tooth-forming epithelia and are crucial for tooth germ initiation. Here we test the hypothesis that restricted expansion of periderm is a teleost-specific character possibly related to the derived way of early embryonic development. To this end, we performed lineage tracing of the periderm in a non-teleost actinopterygian species possessing pharyngeal teeth, the sterlet sturgeon (Acipenser ruthenus), and a sarcopterygian species lacking pharyngeal teeth, the axolotl (Ambystoma mexicanum).

Results: In sturgeon, a stratified ectoderm is firmly established at the end of gastrulation, with minimally a basal ectodermal layer and a surface layer that can be homologized to a periderm. Periderm expands to a limited extent into the mouth and remains restricted to the distal parts of the pouches. It does not reach the medial pharyngeal endoderm, where pharyngeal teeth are located. Thus, periderm in sturgeon covers prospective odontogenic epithelium in the jaw region (oral teeth) but not in the pharyngeal region. In axolotl, like in sturgeon, periderm expansion in the oropharynx is restricted to the distal parts of the opening pouches. Oral teeth in axolotl develop long before mouth opening and possible expansion of the periderm into the mouth cavity.

Conclusions: Restricted periderm expansion into the oropharynx appears to be an ancestral feature for osteichthyans, as it is found in sturgeon, zebrafish and axolotl. Periderm behavior does not correlate with presence or absence of oral or pharyngeal teeth, whose induction may depend on 'ectodermalized' endoderm. It is proposed that periderm assists in lumenization of the pouches to create an open gill slit. Comparison of basal and advanced actinopterygians with sarcopterygians (axolotl) shows that different trajectories of embryonic development converge on similar dynamics of the periderm: a restricted expansion into the mouth and prospective gill slits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨鱼类的外皮命运和牙齿形成的独立性是一致的。
背景:先前的研究报告称,斑马鱼的外胚层部分扩展到口腔和咽袋,但没有到达咽齿发育的内侧内胚层。相反,从外周皮独立产生的类外周皮细胞覆盖了未来的牙齿形成上皮,对牙齿萌发至关重要。在这里,我们验证了一个假设,即外皮的限制性扩张是一种远足目动物特有的特征,可能与早期胚胎发育的衍生方式有关。为此,我们对鲟鱼(Acipenser ruthenus)这一拥有咽齿的非长臂猿类物种和腋龙(Ambystoma mexicanum)这一没有咽齿的长臂猿类物种的外皮进行了世系追踪:结果:在鲟鱼中,分层的外胚层在胃形成末期就已牢固地形成,其中只有最低限度的基底外胚层和表面层,可与外胚层同源。外胚层向口腔内扩展的程度有限,而且仍局限于小袋的远端。它无法到达咽内皮的内侧,而咽齿就位于咽内皮的内侧。因此,鲟鱼的外皮覆盖了颌区(口腔牙齿)的前牙源上皮,但没有覆盖咽区。匙吻鲟与鲟鱼一样,口咽部的外皮扩张仅限于开口袋的远端。斧头鱼的口腔牙齿早在口腔张开和外皮可能扩展到口腔之前就已长出:结论:外皮向口咽部扩展受限似乎是骨鱼类的一个祖先特征,这在鲟鱼、斑马鱼和斧腹鱼中都有发现。外胚层的行为与口腔或咽部牙齿的存在与否无关,口腔或咽部牙齿的诱导可能取决于 "外胚层化 "的内胚层。有人认为,外皮有助于鳃囊的腔化,从而形成开放的鳃裂。将基干动口动物和高级动口动物与石龙子动口动物(斧头鱼)进行比较后发现,胚胎发育的不同轨迹汇聚在类似的外皮动态上:有限制地扩展到口腔和未来的鳃裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
期刊最新文献
Early embryonic development of the German cockroach Blattella germanica. Periderm fate and independence of tooth formation are conserved across osteichthyans. Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development. Single-cell sequencing suggests a conserved function of Hedgehog-signalling in spider eye development. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1