High-sugar diet leads to loss of beneficial probiotics in housefly larvae guts.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-01-08 DOI:10.1093/ismejo/wrae193
Anna Voulgari-Kokota, Francesco Boatta, Ruud Rijkers, Bregje Wertheim, Leo W Beukeboom, Jacintha Ellers, Joana Falcao Salles
{"title":"High-sugar diet leads to loss of beneficial probiotics in housefly larvae guts.","authors":"Anna Voulgari-Kokota, Francesco Boatta, Ruud Rijkers, Bregje Wertheim, Leo W Beukeboom, Jacintha Ellers, Joana Falcao Salles","doi":"10.1093/ismejo/wrae193","DOIUrl":null,"url":null,"abstract":"<p><p>The housefly (Musca domestica) is a common insect species with only a few recurrent bacterial taxa in its gut microbiota, because the numerous microbial acquisition routes in its septic habitats can favor transient microbes. Here, we investigated the role of the diet on the microbiota and the developmental success of a housefly strain reared on three substrates. We used a control wheat bran-based substrate, and added clotted cream and sucrose to make a high-fat, and a high-sugar substrate, respectively. The conducted survey revealed that, in contrast to the high-fat diet, the high-sugar diet caused lower developmental success and less diverse microbiota, in which several lactobacilli were replaced with Weissella bacterial phylotypes. Cultures with sucrose as the sole carbon source confirmed that a Weissella confusa strain, isolated from larvae, could utilize sucrose more efficiently than other tested lactic acid bacteria; a result also supported by gene function prediction analysis. Enhancing the rearing substrate with Limosilactobacillus fermentum and Lactiplantibacillus plantarum strains, which were isolated from control larvae, could not only revert the negative effect of the high-sucrose diet on development, but also increase the gut bacterial diversity. In our study, we show that the microbiota shifts in response to the high-sucrose diet did not benefit the host, that showed lower developmental success. In contrast, high-sucrose favored specific components of the microbiota, that continued to be enriched even after multiple generations, outcompeting beneficial bacteria. Also, microbiome manipulation showed the potential of probiotics to rescue host performance and restore the microbiome.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae193","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The housefly (Musca domestica) is a common insect species with only a few recurrent bacterial taxa in its gut microbiota, because the numerous microbial acquisition routes in its septic habitats can favor transient microbes. Here, we investigated the role of the diet on the microbiota and the developmental success of a housefly strain reared on three substrates. We used a control wheat bran-based substrate, and added clotted cream and sucrose to make a high-fat, and a high-sugar substrate, respectively. The conducted survey revealed that, in contrast to the high-fat diet, the high-sugar diet caused lower developmental success and less diverse microbiota, in which several lactobacilli were replaced with Weissella bacterial phylotypes. Cultures with sucrose as the sole carbon source confirmed that a Weissella confusa strain, isolated from larvae, could utilize sucrose more efficiently than other tested lactic acid bacteria; a result also supported by gene function prediction analysis. Enhancing the rearing substrate with Limosilactobacillus fermentum and Lactiplantibacillus plantarum strains, which were isolated from control larvae, could not only revert the negative effect of the high-sucrose diet on development, but also increase the gut bacterial diversity. In our study, we show that the microbiota shifts in response to the high-sucrose diet did not benefit the host, that showed lower developmental success. In contrast, high-sucrose favored specific components of the microbiota, that continued to be enriched even after multiple generations, outcompeting beneficial bacteria. Also, microbiome manipulation showed the potential of probiotics to rescue host performance and restore the microbiome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高糖饮食导致家蝇幼虫肠道中有益益生菌的流失
家蝇(Musca domestica)是一种常见的昆虫物种,其肠道微生物群中只有少数几个重复出现的细菌类群,这是因为在其化脓性栖息地中众多的微生物获取途径有利于瞬时微生物的生长。在这里,我们研究了饮食对微生物群的作用以及在三种基质上饲养的家蝇菌株的发育成功率。我们使用了以麦麸为基础的对照基质,并添加了凝块奶油和蔗糖,分别制成了高脂肪和高糖分基质。调查显示,与高脂饮食相比,高糖饮食导致的发育成功率较低,微生物群的多样性也较低,其中一些乳酸菌被魏氏细菌系统型所取代。以蔗糖为唯一碳源的培养证实,从幼虫体内分离出的魏氏菌菌株比其他测试的乳酸菌能更有效地利用蔗糖;基因功能预测分析也支持这一结果。在饲养基质中添加从对照组幼虫中分离的发酵乳杆菌(Limosilactobacillus fermentum)和植物乳杆菌(Lactiplantibacillus plantarum)菌株,不仅能逆转高蔗糖饮食对发育的负面影响,还能增加肠道细菌的多样性。在我们的研究中,我们发现高蔗糖饮食引起的微生物群变化对宿主并无益处,宿主的发育成功率较低。相反,高蔗糖有利于微生物群中的特定成分,即使经过多代后,这些成分仍会继续富集,从而取代有益细菌。此外,微生物组操作显示了益生菌挽救宿主表现和恢复微生物组的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Global microbial community biodiversity increases with antimicrobial toxin abundance of rare taxa. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. Long-term climate establishes functional legacies by altering microbial traits. Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. Strain phylogroup and environmental constraints shape Escherichia coli dynamics and diversity over a 20-year human gut time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1